Cho ΔABC vuông tại A (AC > AB), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
C/m: a) ΔABC ∼ ΔHAC.
b) EC . AC = DC . BC.
c) ΔBEC ∼ ΔADC.
CHo tam giác ABC nhọn có 3 đường cao là : AD , BE , CF cắt nhau tại H . Chứng minh : AE*BF*CD = AF * BD*CE=DE*EF*FD
cho góc nhọn xAy. Trên cạnh Ax lấy 2 điểm B và C sao cho AB=4cm; AC=6cm. Trên cạnh Ay lấy 2 điểm D và E sao cho AD=2cm; AE=12cm. Tia phân giác của góc xAy cắt BD tại I và cắt CE tại k.
a. so sánh AD/AB và AE/AC
b. so sánh góc ACE và góc ADB
c. cm: AI.KE=AK.IB
d. cho EC =10cm. Tính BD,DI
e. cm; KE.KC=9IB.ID
Cho tam giác ABC nhọn (AB < AC) có hai đường cao AD và BE cắt nhau tại H. a) Chứng minh tam giác HEA đồng dạng tam giác HDB. b) Kẻ DK vuông góc AC tại K. Chứng minh CD2 = CK.CA c) Gọi N là trung điểm của CK. Trên tia đối của tia AD lấy điểm F sao cho AF = AD. Chứng minh FK vuông góc DN tại S.
Bài 3. Cho tam giác ABC có AD là phân giác của góc BAC, D in BC a) Cho biết AB = 10 cm , AC = 12 cm BD = 4 cm . Tính độ dài đoạn thẳng BC. b) Qua D kẻ đường thẳng song song với AB, cắt AC tại E. Gọi M là trung điểm của AB, AD cắt EM tại I, BE cắt MD tại K. Chứng minh rằng: (IE)/(IM) = (KD)/(KM) . Từ đó chứng minh: IK//ED
Cho △ABC nhọn (AB<AC) có 2 đường cao AD và BE cắt nhau tại H.
a) CM: △HEA \(\sim\) △HDB
b) Kẻ DK \(\perp\) AC tại K. CM : CD2 = CK.CA
c) Gọi N là trung điểm của CK. Trên tia đối của tia AD lấy điểm F sao cho AF = AD. CM: FK \(\perp\) DN tại S
Cho ΔABC , đường cao AD , BE ,CF cắt nhau tại H
C/m: AH.HD=BH.HE=CH.HF
Đề bài :
- Cho hình chữ nhật ABCD, AD < AB, đường cao AH vuông góc BD tại H .
1) CM ΔHAD đồng dạng với ΔABD
2) Với AB = 20cm , AD = 15cm . Tính DB và AH
3) CM AH² = HD . HB
4) Trên tia đối DA lấy E sao cho DE < AD . Vẽ EM ⊥ BD tại M , EM cắt BD tại O . Vẽ AK ⊥ BE tại K, vẽ AF ⊥ OD tại F. CMR: H, F , K thẳng hàng .
Cho hình chữ nhật ABCD (AB > AD). Vẽ AE vuông góc với BD tại E.
a) CMR: \(\Delta ABE\sim\Delta DBA\) và AB2 = BE. BD
b) Giả sử AE cắt BC, DC tại G và F. CMR EA2 = EG. EF
c) Gọi I và H lần lượt là các trung điểm của BF và DG. CMR IH ⊥ EC.