Cho tam giác ABC, tia phân giác của góc A cắt cạnh BC tại điểm D. Lấy một điểm M bất kì nằm giữa B và D. Trên đoạn DC lấy điểm N sao cho góc NAD bằng góc MAD.
Chứng minh tích \(\frac{BM}{CM}.\frac{BN}{CN}\) không đổi khi M thay đổi trên đoạn thẳng BD
Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E.
a) Chứng minh: EA.EB = ED.EC và góc EAD = góc ECB
b) Cho góc BMC = 1200 và SAED = 36 cm2. Tính SECB?
c) Chứng minh rằng khi điểm M di chuyển trên cạnh AC thì tổng BM.BD + CM.CA có giá trị không đổi.
d) Kẻ DH ⊥ BC (H∈ BC). Gọi P, Q lần lượt là trung điểm của các đoạn thẳng BH, DH. Chứng minh CQ ⊥ PD.
Cho △ ABC . Trên cạnh BC lấy D sao cho \(\frac{DB}{DC}=\frac{1}{2}\). Đường thẳng qua D song song với AB cắt AC tại E , đường thẳng qua D song song với AC cắt AB tại F .
a) So sánh \(\frac{AF}{AB}và\frac{AE}{AC}\)
b) Gọi M là trung điểm của AC . Chứng minh EF // BM
Cho ΔABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của BC, D là điểm đối xứng của A qua M. Trên tia đối của tia Ha lấy điểm E sao cho HE = HA.
a. CM: HM // ED và HM = \(\frac{1}{2}ED\)
b. CM: ABDC là hình chữ nhật
c. Gọi P, Q lần lượt là hình chiếu của E lên BD và CD, EP cắt AD tại K. CM: DE = DK
d. CM: ba điểm H, P, Q thẳng hàng
Cho tam giac ABC có đường thẳng d đi qua B. Từ diểm E bất kì trên AC kẻ đường thẳng song song AB AC lần lượt cắt d tại M và N. Gọi D là giao điểm của ME và BC. Đường thẳng NE cắt AB và MC lần lượt tại F và K. Chứng minh:
a)AFN \(\sim\) MDC
b)AN//MK
Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC
a) Tính độ dài OC; CD
b) Chứng minh rằng FD.BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON.
Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC
a) Tính độ dài OC; CD
b) Chứng minh rằng FD.BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON
Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC
a) Tính độ dài OC; CD
b) Chứng minh rằng FD.BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON
Cho tam giác ABC có AB < AC. Từ trung điểm D của BC vẽ đường vuông góc với tia phân giác của góc A tại H. đường thẳng này cắt tia AB tại E và cắt AC tại F. Vẽ tia BM song song với EF ( M thuộc AC )
a, CM: tam giác ABM cân
b, CM: MF=BE=CF
c, Qua D vẽ đường thẳng vuông góc với BC cắt tia AH tại I. CMR IF vuông góc với AC