\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c+d=100\\a-b+c-d=-50\\8a+4b+2c+d=120\\27a+9b+3c+d=P\left(3\right)\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\\\left(4\right)\end{matrix}\)
(1)+(2) \(\Leftrightarrow2\left(a+c\right)=50\Rightarrow c=25-a\)
(1)-(2) \(\Leftrightarrow2\left(b+d\right)=150\Rightarrow b=75-d\)
thế vào (3)<=> \(8a+4\left(75-d\right)+2\left(25-a\right)+d=120\)
\(\Leftrightarrow6a-3d=230\Rightarrow d=2a+\dfrac{230}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=25-a\\b=-2a-\dfrac{5}{3}\\d=2a+\dfrac{230}{3}\end{matrix}\right.\)
\(P\left(3\right)=27a-9\left(2a+\dfrac{5}{3}\right)+3\left(25-a\right)+2a+\dfrac{230}{3}\)
\(\left\{{}\begin{matrix}\forall a\in R;a\ne0\\P\left(3\right)=8a+\dfrac{410}{3}\end{matrix}\right.\)
bn vào link này tham khảo bài của Ace Legona :https://hoc24.vn/hoi-dap/question/241534.html