a) A=\(x^2-4xy+4y^2+1=\left(x^2-4xy+4y^2\right)+1=\left(x^2-2x2y+\left(2y\right)^2\right)+1=\left(x-2y\right)^2+1\)
Do \(\left(x-2y\right)^2\)>=0
=>\(\left(x-2y\right)^2\)+1>=1
=>\(\left(x-2y\right)^2\)+1>0
=>\(x^2-4xy+4y^2+1\)>0
Vậy A>0 với mọi x,y
b) Ta có A=\(x^2-4xy+4y^2+1=\left(x-2y\right)^2+1\)
Thay x-2y=4 vào biểu thức (x-2y)\(^2\) ta có:
4\(^2\)+1=16+1=17
Vậy giá trị của A tại x-2y=4 là 17
a.
\(A=x^2-4xy+4y^2+1\\ =\left(x^2-2.x.2y+\left(2y\right)^2\right)+1\\ =\left(x-2y\right)^2+1\ge1>0\)
b.
\(x-2y=4\\ \Rightarrow A=\left(x-2y\right)^2+1=16+1=17\)