Trong mặt phẳng tọa độ Oxy, cho Parabol(P): y=x2 và đường thẳng (d): y=2(m+1)x-m2-4 (1), (m là tham số)
a) Tìm m để đường thẳng (d) đi qua A(0;-5)
b) Với giá trị nào của m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có hoành độ x1; x2 thỏa mãn điều kiện: (2x1-1)(x22-2mx2+m2+3)=21
Bài 1 Cho parabol (P) và đt (d) y= -2x +1 -m
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -2
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ \(x_1,x_2\) thỏa mãn \(x^2_1+x_2^2=x_1.x_2+8\)
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y=x2 và đường thẳng (d): y=2(m-1)x+5-2m (m là tham số)
a) Vẽ đồ thị parabol (P).
b) Biết đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Gọi hoành độ giao điểm của đường thẳng (d) và parabol (P) là x1, x2. Tìm m để x+x=6
Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m + 1)x - 4
a) Tìm m để đường thẳng (d) và parabol (P) cắt nhau tại hai điểm phân biệt
b) Gọi A (x1;y1) và B (x2;y2) là hai giaoo điểm của đường thẳng (d) với parabol (P). Tìm m để \(\sqrt{x_1}-\sqrt{x_2}=2\)
1,Parabol (P) y = x^2 và đường thẳng (d) y = 5 x - m + 1 (với m là tham số) tìm tất cả các giá trị của m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt có hoành độ là x1,x2 sao cho (x1x2+1)^2=20(x1 + x2)
2, cho đường thẳng (d) y = (m - 1)x + 2 m + 5 với m là tham số
a, Tìm tọa độ điểm I cố định Mà (d) luôn đi qua với mọi m b, Tìm m để đường thẳng đi qua điểm A (1;5) trong trường hợp đó thì tìm khoảng cách từ gốc tọa độ và từ điểm I đến đường thẳng (d)
3, Trong mặt phẳng tọa độ Oxy Cho parabol (P) y = 1/2x^2 và đường thẳng (d ) y = x + m
a, Tìm m để (d) cắt (P) tại 2 điểm phân biệt A và B
b, tìm các giá trị của m để độ dài đoạn thẳng AB = 6√2
Bài 2 Cho parabol (P) \(y=x^2\) và đt (d) \(y=2\left(m+1\right)x-m+4\)
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -5
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ\(x_1,x_2\) sao cho \(A=|x_1-x_2|\) đạt GTNN và tìm GTNN đó
Bài 3 cho parabol (P)\(y=x^2\) và đt (d) y =(2-m)x +m-3
a,CM : (d) và (P) luôn có điểm chung
b, Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) sao cho \(\left|x_1\right|+x^2_2=2\)
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x ^ 2 và đường thẳng (d) có phương trình (d) v = 2x + m ^ 2 - 2m (với m là tham số)
Xác định tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ lần lượt là x1, và x2, thỏa mãn điều kiện x1 ^ 2 + 2x2 = 3m
Trong mp tọa độ cho đ/t (d)y=(2m+1)x-2m+4 và (P) y=\(x^2\)
a,cm : (d) luôn cắt (P) tại 2 điểm phân biệt A,B
b, Gọi H ,K là hình chiếu của A,B trên Ox .
Tìm m để H,K nằm ở 2 phía trục tung thỏa mãn độ dài HK =4