\(MI^2=MH\cdot MK\\ \Rightarrow\dfrac{MI}{MK}=\dfrac{MH}{MI}\)
Tứ giác MKCI có \(\widehat{IMK}+\widehat{MKC}+\widehat{KCI}+\widehat{MIC}=360^o\)
\(\Rightarrow\widehat{IMK}+\widehat{KCI}=360^o-90^o-90^o=180^o\)
Chứng minh tương tự \(\widehat{HMI}+\widehat{IBH}=180^o\)
Mà △ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{IMK}=\widehat{IMH}\)
△MIH và △MKI có
\(\widehat{IMH}=\widehat{IMK}\\ \dfrac{MI}{MK}=\dfrac{MH}{MI}\)
\(\Rightarrow\text{△MIH}\) \(\sim\) \(\text{△MKI}\) (c.g.c)