Cho ∆ ABC nhọn nội tiếp đường tròn (O;R)(AB<AC) có các đường cao AD và BE cắt nhau tại H. Gọi M là trung điểm BC . Đường tròn (K) đường kính AH cắt AM tại P. Gọi R' là bán kính đường tròn ngoại tiếp tam giác BPC
Cmr tứ giác HDMP nội tiếp được đường tròn
Cho tam giác ABC vuông tại A(AB>AC) có đường cao AH (H thuộc BC).Trên nửa mp bờ BC chứa điểm A,vẽ nửa đường tròn(O1) đường kính BH cắt AB tại I (I khác B) và nửa đường tròn (O2) đường kính HC cắt AC tại K (K khác C).CM
a) Tứ giác BIKC là tứ giác nội tiếp
b) IK là tiếp tuyến chung của 2 nửa đtron (O1) và (O2)
Giúp mình với ạ,mình cảm ơn rất nhiềuuuuuu
Cho ∆ABC có 3 góc nhọn (AB < AC) nội tiếp trong đường tròn (O) , hai đường cao BF và CE cắt nhau tại H
a/ Chứng minh 4 điểm B, E, F,C cùng nằm trên một đường tròn . Xác định tâm I của đường tròn đó
b/ Tia AH cắt (O) tại M và vẽ đường kính AD của đường tròn (O) . Chứng minh tứ giác BCDM là hình thang cân
c/ Chứng minh H, I, D thẳng hàng
d/ AD cắt EF tại K . Chứng minh AD vuông EF
Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn đường kính AH cắt AB, AC lầnlượt ở E, F.a. Chứng minh AEHF là hình chữ nhật.b. Chứng minh BEFC nội tiếp và AE. AB = AF. ACc. Đường thẳng qua A vuông góc với EF cắt BC tại I. CMR: I là trung điểm của BC.d. Chứng minh nếu diện tích tam giác ABC bằng 2 lần diện tích của tứ giác AEHF thì tam giác ABCvuông cân.
Mình lm đc câu a,b r giúp mình câu c,d với
Cho tam giác ABC nhọn AB <AC , đường cao AH .M,N là hình chiếu của H trên AB,AC . MN cắt BC tại D . Trên nửa mp bờ BC chứa A vẽ nửa đường tròn đường kính CD . Qua B kẻ đường vuông góc với CD cắt nửa đường tròn tại E. Gọi O là tâm đường tròn ngoại tiếp tam giác MNE . Cm: OE vuông góc DE
Cho tam giác ABC nhọn, BC = AC, đường tròn tâm O đường kính BC cắt AB,AC tại E,F. BF cắt CE tại H, AH cắt BC tại D.
a) Chứng minh: AD vuông góc BC
b) Chứng minh: AD là đường phân giác của góc EDF
c) Đường tròn đường kính EC cắt AC tại M, BM cắt (O) tại K. Chứng minh: KC đi qua trung điểm của HF
cho tam giác abc vuông tại a kẻ đường cao ah vẽ đuòng tròn đuòng kính ah đường tròn cắt ab tại e cắt ac tại F , gọi m là giao điểm của CE và BF . So sánh diện tích tứ giác AEMF và diện tích tam giác BMC
Cho tam giác ABC có ba góc nhọn. Đường tròn tâm O đường kính BC cắt AC tại E cắt AC tại F . Các tia BF và CE cắt nhau tại H . CMR
a) AH vuông goác BC
b) Gọi K là giao điểm của AH và BC. CMR: FB là phân giác góc EFK
c) Gọi M là trung điểm BH. CMR: EMKF nội tiếp
Cho \(\Delta ABC\) vuông tại A(AB>AC), đường cao AH. Trên nửa mp bờ BC chứa điểm A, vẽ hai nửa đường tròn đường kính BH và nửa đường tròn đường kính HC. Hai nửa đường tròn này cắt AB và AC tại E và F. Giao điểm của FE và AH là O. C/m :
a, Tứ giác AFHE là hình chữ nhật
b, Tứ giác BEFC nội tiếp
c, AE.AB=AF.AC
d, FE là tiếp tuyến chung của hai nửa đường tròn
f, Chứng tỏ: BH.HC=4.OE.OF