cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
cho tam giác ABC VUÔNG Tại A . gọi I là trung điểm của bc . trên tia đối của IA lấy điểm D sao chi ID=Ia
a) chứng minh rằng tam giá BID = tam giác CIA
b) CMR BD vuông góc AB
c) qua a kẻ đường song song với BC cắt đường thẳng BD tại M. chứng minh. tam giác BAM= tam giác ABC
d) chứng minh rằng AB là phân giác của góc DAM
Cho Δ ABC. Vẽ AH vuông góc với BC tại H, trên tia đối của tia AH lấy điểm D sao cho AH = HD.
a) Chứng minh: Δ ABH = Δ DBH.
b) Chứng minh: BC là phân giác của góc ABD
c) Chứng minh: Góc BAC = Góc BOC
d) Gọi M là trung điểm của AB. Qua M vẽ đường thẳng song song AH và cắt BD tại N.
Chứng minh: N là trung điểm của BD
Cho Δ ABC. Vẽ AH vuông góc với BC tại H, trên tia đối của tia AH lấy điểm D sao cho AH = HD.
a) Chứng minh: Δ ABH = Δ DBH.
b) Chứng minh: BC là phân giác của góc ABD
c) Chứng minh: Góc BAC = Góc BOC
d) Gọi M là trung điểm của AB. Qua M vẽ đường thẳng song song AH và cắt BD tại N.
Chứng minh: N là trung điểm của BD
Cho Δ ABC. Vẽ AH vuông góc với BC tại H, trên tia đối của tia AH lấy điểm D sao cho AH = HD.
a) Chứng minh: Δ ABH = Δ DBH.
b) Chứng minh: BC là phân giác của góc ABD
c) Chứng minh: Góc BAC = Góc BOC
d) Gọi M là trung điểm của AB. Qua M vẽ đường thẳng song song AH và cắt BD tại N.
Chứng minh: N là trung điểm của BD
Cho Δ ABC. Vẽ AH vuông góc với BC tại H, trên tia đối của tia AH lấy điểm D sao cho AH = HD.
a) Chứng minh: Δ ABH = Δ DBH.
b) Chứng minh: BC là phân giác của góc ABD
c) Chứng minh: Góc BAC = Góc BOC
d) Gọi M là trung điểm của AB. Qua M vẽ đường thẳng song song AH và cắt BD tại N.
Chứng minh: N là trung điểm của BD
Cho Δ ABC có B > C. Đường thẳng chứa tia phân giác của góc ngoài tại đỉnh A cắt đường thẳng BC ở E.
a) Chứng minh rằng: \(AEB=\frac{1}{2}\left(B-C\right)\)
b) Từ B kẻ đường thẳng song song với AE cắt cạnh AC ở K. CMR: Δ ABK có hai góc bằng nhau.
cho tam giác ABC cân ở A . trên cạnh BC lấy điểm D . trên tia đối của tia CB lấy điểm E sao cho BD = CE . từ D kẻ đường vuông góc với BC cắt AB ở M . từ E kẻ đường vuông góc với BC cắt AC ở N
a] CMR : MD = NE
b]MN cắt DE ở I : CMR : I là trung điểm của DE
c] từ D kẻ đường vuông góc với AC . từ B kẻ đường vuông góc với AB chúng cắt nhau tại O . CMR AO là đường trung trực của BC
1. Cho tam giác ABC có góc A bằng 90 độva AB=AC .Qua A kẻ đường thẳng d sao cho BC nằm cùng phía đối với d .Kẻ BD và CE vuông góc với d(DE thuộc d)
Chứng minh rằng BD=AEvà AD=CE
2. Cho tam giác ABC nhọn . Gọi M là trung điểm của cạnh AC . Trên tia đối MB lấy D sao cho MD=MB.
a.Chứng minh :t/g ABM=t/g CDM
b. Chứng minh :AD//BC
c. Gọi N là trung điểm của BC đường thẳng NM cắt AD tại E Chứng minh M là trung điểm của NE
Giups minh nhé các bạn!