2x2 + y2 + 13z2 - 6xz - 4yz - 6x + 9 =
<=> x2 - 6x + 9 + x2 - 6xz + 9z2 + 4z2 - 4yz + y2 = 0
<=> (x - 3)2 + (x - 3z)2 + (2z - y)2 = 0
<=> \(\left\{{}\begin{matrix}x-3=0\\x-3z=0\\2z-y=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=3\\z=1\\y=2\end{matrix}\right.\)
Thay x = 3; y = 2 và z = 1 vào P, ta có:
\(P=\dfrac{2\times3\times2+3\times1-3^2-2\times2^2-2\times1}{3^2-2^2}=-\dfrac{4}{5}\)
ĐS: \(-\dfrac{4}{5}\)
2x2 + y2 +13z2-6xz-4yz-6x+9=0
<=> (x2+6x+9)+(x2-6xz+9z2)+(y2-4yz+4z2)=0
<=> (x+3)2+(x-3z)2+(y-2z)2=0
=>x= -3;y= -2;z= -1
Thay vào P có : P=-4/5