Gọi S là tổng:
\(S=\dfrac{1}{10}+\dfrac{1}{40}+\dfrac{1}{88}+\dfrac{1}{154}+\dfrac{1}{238}+\dfrac{1}{340}\\ =\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+\dfrac{1}{14\cdot17}+\dfrac{1}{17\cdot20}\\ =\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}\right)+\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}\right)+...+\dfrac{1}{3}\left(\dfrac{1}{17}-\dfrac{1}{20}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{17}-\dfrac{1}{20}\right)\\ =\dfrac{1}{3}\cdot20\\ =\dfrac{3}{20}\)