1/cho số a >0 tìm GTNN của P = 2a +\(\frac{4}{a}\)+\(\frac{16}{a+2}\)
2/ cho a,b,c là số thực ϵ [0;\(\frac{1}{4}\)) chứng minh:
\(\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
3/ cho các số dương a,b,c tỏa abc = 1. Chứng minh
\(\frac{1}{a^2c+b^2c+1}+\frac{1}{b^2a+c^2a+1}+\frac{1}{c^2b+a^2b+1}\le1\)
Cho a, b, c là các số thực dương. Chứng minh rằng :
\(\frac{a}{\sqrt{4a^2+\left(b+c\right)^2}}+\frac{b}{\sqrt{4b^2+\left(c+a\right)^2}}+\frac{c}{\sqrt{4c^2+\left(a+b\right)^2}}\le\frac{3\sqrt{2}}{4}\)
cho a b c > 0. Chứng minh các bất đẳng thức :
1, \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
2, \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\)
3, ( 1+a+b) (a+b+ab) \(\ge9ab\)
4, \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\)
5, \(3a^3+7b^3\ge9ab^2\)
6, \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge2\sqrt{2\left(a+b\right)\sqrt{ab}}\)
Cho các số thực dương : \(a;b;c\) thỏa mãn điều kiện : \(ab+bc+ac+abc=4\)
Chứng minh rằng : \(\dfrac{1}{\sqrt{2.\left(a^2+b^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(b^2+c^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(c^2+a^2\right)}+4}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán.
Em cám ơn nhiều lắm ạ!
Cho ba số thực không âm \(a;b;c\) và thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). Chứng minh rằng :
\(\sqrt{\left(a+b+1\right).\left(c+2\right)}+\sqrt{\left(b+c+1\right).\left(a+2\right)}+\sqrt{\left(c+a+1\right).\left(b+2\right)}\ge9\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn rất nhiều ạ!
Cho ba số thực dương a; b và c thỏa mãn :\(a+b+c=3\). Tìm giá trị lớn nhất của biểu thức sau:
\(P=\sqrt{9a+16b}+\sqrt{9b+16c}+\sqrt{9c+16a}\)
Cho a,b,c,d là các số thực dương thõa mãn \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}+\frac{1}{ad}=1\)
Chứng minh rằng \(\frac{abcd}{8}+2\ge\sqrt{\left(a+c\right)\left(\frac{1}{a}+\frac{1}{c}\right)}+\sqrt{\left(b+d\right)\left(\frac{1}{b}+\frac{1}{d}\right)}\)
**@** Mọi người giúp em lm bài này đc ko ạ **@**
Cho 3 số thực a, b, c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\). Chứng minh rằng :
\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\le3\sqrt{3\left(a+b+c\right)}\)
Câu 1: Chứng minh \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1)n}\) với ∀n∈\(N^*\)
Câu 2: Cho a,b,c là các số thực dương. Chứng minh rằng: \(\frac{a^4+b^4+c^4}{a+b+c}\geq abc\).
Câu 3: Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca=3\). Chứng minh rằng: \(\sqrt{a^6+b^6+1}+\sqrt{b^6+c^6+1}+\sqrt{c^6+a^6+1}\geq 3\sqrt{3}\)
Câu 4: Cho các số thực không âm a,b,c thỏa mãn \(a+b+c=3\).Chứng minh rằng: \(a^3+b^3+c^3\geq 3\)
Câu 5: Với \(a,b,c>0\) thỏa mãn điều kiện \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1\). Chứng minh rằng: \(\sqrt\frac{b}{a}+\sqrt\frac{c}{b}+\sqrt\frac{a}{c}\leq 1\)