§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
TXT Channel Funfun

Cho 3 số thực a, b, c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\). Chứng minh rằng :

\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\le3\sqrt{3\left(a+b+c\right)}\)

tthnew
31 tháng 10 2019 lúc 19:57

Em nghĩ cần thêm đk a, b, c là các số thực dương

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì x + y + z = 3; x > 0,y>0,z>0

BĐT \(\Leftrightarrow\sqrt{\frac{5}{x}+4}+\sqrt{\frac{5}{y}+4}+\sqrt{\frac{5}{z}+4}\le3\sqrt{3\left(\frac{xy+yz+zx}{xyz}\right)}\)

\(\Leftrightarrow\sqrt{5yz+4xyz}+\sqrt{5zx+4xyz}+\sqrt{5z+4xyz}\le3\sqrt{3\left(xy+yz+zx\right)}\)(*)

\(VT\le\sqrt{5\left(xy+yz+zx\right)+12xyz+2\Sigma_{cyc}\sqrt{\left(5yz+4xyz\right)\left(5zx+4xyz\right)}}\)

\(\le\sqrt{15\left(xy+yz+zx\right)+36xyz}\)(áp dụng BĐT AM-GM)

Chú ý rằng: \(xyz\le\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{9}\)

Từ đó \(VT\le\sqrt{15\left(xy+yz+zx\right)+4\left(xy+yz+zx\right)\left(x+y+z\right)}\)

\(=3\sqrt{3\left(xy+yz+zx\right)}=VP_{\text{(*)}}\)

Ta có đpcm.

Đẳng thức xảy ra khi a = b = c = 1

Is that true?

Khách vãng lai đã xóa
Akai Haruma
31 tháng 10 2019 lúc 21:40

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

\(3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}\Rightarrow a+b+c\geq 3\)

Và:

\(\text{VT}^2=(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4})^2\)

\(\leq (5a+4+5b+4+5c+4)(1+1+1)\)

\(\Leftrightarrow \text{VT}^2\leq 15(a+b+c)+36\)

Mà $3\leq a+b+c$ (cmt)

$\Rightarrow \text{VT}^2\leq 15(a+b+c)+12(a+b+c)=27(a+b+c)$

$\Rightarrow \text{VT}\leq 3\sqrt{3(a+b+c)}$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=1$

Khách vãng lai đã xóa

Các câu hỏi tương tự
TXT Channel Funfun
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
NGỌC CẨM
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Linh Châu
Xem chi tiết
TXT Channel Funfun
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Linh Châu
Xem chi tiết
Bey Bey
Xem chi tiết