Cho các số dương x,y,z thỏa mãn \(x^3+y^3+z^3=1\). CMR :
\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\)
\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}=\dfrac{x^3}{\sqrt{x^2}.\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)
\(\dfrac{y^2}{\sqrt{1-y^2}}=\dfrac{y^3}{y\sqrt{1-y^2}}=\dfrac{y^3}{\sqrt{y^2}.\sqrt{1-y^2}}\ge\dfrac{y^3}{\dfrac{y^2+1-y^2}{2}}=2y^3\)
\(\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{z^3}{z\sqrt{1-z^2}}=\dfrac{z^3}{\sqrt{z^2}.\sqrt{1-z^2}}\ge\dfrac{z^3}{\dfrac{z^2+1-z^2}{2}}=2z^3\)
Cộng từng vế của các BĐT , ta được :
\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\)
Áp dụng BĐT AM-GM ta có:
\(\Sigma\dfrac{x^2}{\sqrt{1-x^2}}=\Sigma\dfrac{x^2x}{x\sqrt{1-x^2}}\)
\(=\Sigma\dfrac{x^3}{\sqrt{x^2\left(1-x^2\right)}}=\Sigma\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=\Sigma2x^3=2\)
Học toán 9 cùng thầy Hồng Trí Quang