Cho a≥1; b≥9; c≥16 thỏa mãn a.b.c = 1152
Tìm giá trị lớn nhất của biểu thức :
P = bc\(\sqrt{a-1}+ca\sqrt{b-9}+ab\sqrt{c-16}\)
Cho a,b,c là 3 só thực dương thỏa mãn : abc = 1
Tìm giá trị lớn nhất của biểu thức:
\(p=\dfrac{ab}{a^5+b^5+ab}+\dfrac{bc}{b^5+c^5+bc}+\dfrac{ca}{c^5+a^5+ca}\)
Cho \(a\), \(b\), \(c\) là 3 số thực không âm thỏa mãn: \(a+b+c=3\)
Tìm GTNN của biểu thức: \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\)
(mong mọi người giúp em bằng cách chứng minh dễ nhất với các bđt quen thuộc vd côsi, bunhia...., trừ khi nếu không thể ạ) Em cảm ơn ạ!
Cho các số thực a, b, c thay đổi luôn thỏa mãn: a ≥ 1,b ≥ 1,c ≥ 1 và ab + bc + ca = 9. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức P = a2 + b2 + c2
Cho a, b, c là các số dương thoả mãn: a+b+c=1. Chứng minh bất đẳng thức: \(\sqrt{ab+c}\) + \(\sqrt{bc+a}\) + \(\sqrt{ca+b}\) ≤ 2
Cho các số thực dương a,b,c thảo mãn \(a^2+b^2+c^2=1\). CHứng minh:
\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ac\)
Cho a,b,c > 0 có a+b+c = 3 Tìm gtln của
\(Q=\dfrac{ab}{\sqrt{3a^2+b^2}+1}+\dfrac{bc}{\sqrt{3b^2+c^2}+1}+\dfrac{ca}{\sqrt{3c^2+a^2}+1}\)
Cho a, b, c > 0 thỏa mãn a+b+c=1
Tính \(P=\left(\frac{a-bc}{a+bc}+\frac{b-ac}{b+ac}+\frac{c-ab}{c+ab}\right):\frac{ab+bc+ca+3abc}{ab+bc-abc}.\)
Cho các số thực dương a, b, c thoả mãn: a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(Q=\dfrac{ab}{c+ab}+\dfrac{ac}{b+ac}+\dfrac{bc}{a+bc}-\dfrac{1}{4abc}\)