\(\Rightarrow\dfrac{1}{Rtd}=\dfrac{1}{R1}+\dfrac{1}{R2}+....+\dfrac{1}{R2021}\)
\(\Rightarrow\dfrac{1}{Rtd}=\dfrac{1}{1}+\dfrac{1}{\dfrac{1}{2}}+\dfrac{1}{\dfrac{1}{3}}+....+\dfrac{1}{\dfrac{1}{2021}}\)
\(\Rightarrow\dfrac{1}{Rtd}=1+2+3+....+2021\)
\(A=1+2+3+....+2021\)
\(A=2021+2020+2019+...+1\)
\(\Rightarrow2A=2022+2022+...+2022\)(co 2021 so 2022)
\(\Rightarrow2A=2022.2021\Rightarrow A=\dfrac{2022.2021}{2}=2043231\)
\(\Rightarrow\dfrac{1}{Rtd}=A\Rightarrow Rtd=4,89.10^{-7}\left(\Omega\right)\)