a) Ta có C = A+B
=> C = ( x2 - 2y + xy +1 ) + ( x2 + y - x2y2 - 1 )
<=> C = x2 - 2y + xy + 1 + x2 + y - x2y2 - 1
<=> C = ( x2 + x2 ) + ( -2y + y ) + xy - x2y2 + ( 1 - 1 )
<=> C = 2x2 + ( -1y ) + xy - x2y2 + 0
<=> C = 2x2 - y + xy - x2y2
b) Ta có : C + A = B
=> C = B - A
<=> C = ( \(x^2+y-x^2y^2-1\)) - ( \(x^2-2y+xy+1\))
C = \(x^2+y-x^2y^2-1\)\(-x^2+2y-xy-1\)
C = (\(x^2-x^2\))+(\(y+2y\))\(-xy-x^2y^2\)
C = 0 + 3y \(-xy-x^2y^2\)
C = 3y\(-xy-x^2y^2\)
=> A+B=C =x2 +x2 -2y + y + xy - x2 y2 +1 -1
= 2x2 - y + xy - x2 y2