Áp dụng BĐT AM - GM ta có :
\(B=x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{2019^2}{3}=1358787\)
Dấu "=" xảy ra :
\(\Leftrightarrow x=y=z=\dfrac{2019}{3}\)
Vậy....
Áp dụng BĐT AM - GM ta có :
\(B=x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{2019^2}{3}=1358787\)
Dấu "=" xảy ra :
\(\Leftrightarrow x=y=z=\dfrac{2019}{3}\)
Vậy....
Cho \(B=x^2+y^2+z^2\). Tìm GTNN của biểu thức: \(B=x^2+y^2+z^2\) biết x+y+z=2019
Cho: \(B=x^2+y^2+z^2\). Tìm GTNN của: \(B=x^2+y^2+z^2\) biết x+y+z=2019
Cho: \(B=x^2+y^2+z^2\). Tìm GTNN của biểu thức: \(B=x^2+y^2+z^2\)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\) và biểu thức \(P=x+y^2+z^3\).
a/. CM: \(P\ge x+2y+3z-3\)
b/. tìm GTNN của P
Cho x,y,z là các số thực thỏa x+y+z =3 và (x+y)2+(y+z)2+(z+x)2=12. Tính giá trị biểu thức A= (2x-y)2019+(2y-z)2019+(2z-x)2019
Chứng minh rằng nếu \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\) thì: \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)
cho x,y,z>0 và x+y+z<=3.Tìm gtnn của P=x^2+y^2+z^2+20/x+y+z
Cho x + y + z = a ; x^2 + y^2 + z^2 = b^2 và 1/x+1/y+1/z= c. Tính giá trị của biểu thức x^3 + y^3 + z^3 theo a, b, c
Cho: \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\). Tính giá trị của biểu thức: \(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}\)