Bài 7: Phương trình quy về phương trình bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đào Kim Ngân

Cho biểu thức P=\(\left(\frac{\sqrt{X}+2}{\sqrt{X}+3}+\frac{X^2-X+3}{X+\sqrt{X}-6}\right):\left(\frac{\sqrt{X}}{\sqrt{X}+2}+\frac{\sqrt{X}+4}{X+5\sqrt{X}+6}\right)\)

a,Rút gọn P

B,Tìm x để P lớn hơn hoặc bằng 0

c,Tìm các giá trị của x,y để\(\left(x-4\right)P+y^2+2xy+1+\left|2x+3y+1\right|=0\)

Nguyễn Việt Lâm
8 tháng 4 2019 lúc 15:00

c/

\(\left(x-4\right)P+y^2+2xy+1+\left|2x+3y+1\right|=0\)

\(\Leftrightarrow\frac{\left(x-4\right)\left(x^2-1\right)}{x-4}+y^2+2xy+1+\left|2x+3y+1\right|=0\)

\(\Leftrightarrow x^2+y^2+2xy+\left|2x+3y+1\right|=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left|2x+3y+1\right|=0\)

Do \(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\\left|2x+3y+1\right|\ge0\end{matrix}\right.\) \(\forall x;y\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\2x+3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Nguyễn Việt Lâm
8 tháng 4 2019 lúc 14:57

ĐKXĐ: \(x\ge0;x\ne4\)

\(P=\left(\frac{\sqrt{x}+2}{\sqrt{x}+3}+\frac{x^2-x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\right)\)

\(P=\left(\frac{x-4+x^2-x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{x+3\sqrt{x}+\sqrt{x}+4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\right)\)

\(P=\left(\frac{x^2-1}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2}\right)\)

\(P=\frac{x^2-1}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}.\left(\frac{\sqrt{x}+3}{\sqrt{x}+2}\right)\)

\(P=\frac{x^2-1}{x-4}\)

b/ Để \(P\ge0\Leftrightarrow\frac{x^2-1}{x-4}\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-1\ge0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-1\le0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>4\\-1\le x\le1\end{matrix}\right.\)

Kết hợp với ĐKXĐ \(x\ge0\), \(\Leftrightarrow\left[{}\begin{matrix}x>4\\0\le x\le1\end{matrix}\right.\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Bich Hong
Xem chi tiết
Đặng Nguyễn Khánh Uyên
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phạm Trần Tuyết Ninh
Xem chi tiết
Mai Thị Thanh Xuân
Xem chi tiết
Thái Viết Nam
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết