Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Oanh Lê

Cho biểu thức: P=(\(\dfrac{2-\sqrt x}{1-x}\)-\(\dfrac{\sqrt x -2}{x+2\sqrt x +1}\)):\(\frac{2}{x^2-2x+1}\)

a, Rút gọn P

b, Tìm x sao cho P+x\(\le\) 2

Nguyễn Lê Phước Thịnh
11 tháng 8 2020 lúc 21:16

a) Ta có: \(P=\left(\frac{2-\sqrt{x}}{1-x}-\frac{\sqrt{x}-2}{x+2\sqrt{x}+1}\right):\frac{2}{x^2-2x+1}\)

\(=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\frac{\left(x-1\right)^2}{2}\)

\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\right)\cdot\frac{\left(x-1\right)^2}{2}\)

\(=\frac{x-\sqrt{x}-2-\left(x-3\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\frac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)

\(=\frac{x-\sqrt{x}-2-x+3\sqrt{x}-2}{2}\cdot\frac{\left(\sqrt{x}-1\right)}{1}\)

\(=\frac{2\sqrt{x}-4}{2}\cdot\left(\sqrt{x}-1\right)\)

\(=\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}-1\right)\)

\(=x-3\sqrt{x}+2\)

b) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có: \(P+x\le2\)

\(\Leftrightarrow x-3\sqrt{x}+2+x-2\le0\)

\(\Leftrightarrow2x-3\sqrt{x}\le0\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-3\right)\le0\)

Trường hợp 1: \(\sqrt{x}\left(2\sqrt{x}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\2\sqrt{x}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2\sqrt{x}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=\frac{9}{4}\left(nhận\right)\end{matrix}\right.\)

Trường hợp 2: \(\sqrt{x}\left(2\sqrt{x}-3\right)< 0\)

\(\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ

nên \(2\sqrt{x}-3< 0\)

\(\Leftrightarrow2\sqrt{x}< 3\)

\(\Leftrightarrow\sqrt{x}< \frac{3}{2}\)

\(\Leftrightarrow x< \frac{9}{4}\)

\(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

nên \(\left\{{}\begin{matrix}0< x< \frac{9}{4}\\x\ne1\end{matrix}\right.\)

Vây: Để \(P+x\le2\) thì \(\left\{{}\begin{matrix}0\le x\le\frac{9}{4}\\x\ne1\end{matrix}\right.\)


Các câu hỏi tương tự
TR ᗩ NG ²ᵏ⁶
Xem chi tiết
Trang
Xem chi tiết
Dennis
Xem chi tiết
Dorris Linh
Xem chi tiết
Dorris Linh
Xem chi tiết
Nhân Văn
Xem chi tiết
Nguyễn Mai Khánh Huyề...
Xem chi tiết
Nguyễn Mai Khánh Huyề...
Xem chi tiết
Alone
Xem chi tiết