Cho biểu thức A = \(\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
B = \(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\) với x ≠ 9, x ≥ 0
a, Rút gọn biểu thức A
b, Tìm các giá trị của x để B > A
1.Cho A=\(\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)với x≥0, x≠9, x≠4
a, rút gọn A
b, tìm x để A∈Z
c, tìm x để A<0
2.cho biểu thức A=\(\frac{\sqrt{x-1-2\sqrt{x}-2}}{\sqrt{x-2}-1}\left(x\ge2,x\ne3\right)\)
a, rút gọn A
b, tính A khi x=6
Mn giúp mình với ạ :33
Rút gọn:
a, A = \(\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\) (đk: x ≥ 0 và x ≠ 36)
b, B = \(\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\) (đk: x ≥ 0 và x ≠ 9)
c, C = \(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\) (đk: a > 0, b > 0 và a ≠ b)
d, D = \(\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\) (đk: a ≥ 0, a ≠ 2, a ≠ 4)
cho biểu thức P=\(\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right)\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
với x≥0; x≠4; x≠9
1, rút gọn P
2, tìm tất cả các giá trị nguyên của x để P<0
3, tìm GTNN của P
Bài 1. Cho A=\(\left(\frac{1}{\sqrt{a}-3}+\frac{1}{\sqrt{a}+3}\right)\left(1-\frac{3}{\sqrt{a}}\right)\)
a, Rút gọn biểu thức A
b,Xác định a để biểu thức A >\(\frac{1}{2}\)
Bài 2.Cho B=\(\left(\frac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\frac{3}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}-2}\right)\) với x > 0, x \(\ne\)4
a,Rút gọn A
b,Tính A với x=6-\(2\sqrt{5}\)
Cho A=\(\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{x+4}{x+\sqrt{x}+1}\right)\)với x≥0,x≠1
a. Rút gọn A
b. Tìm x∈Z để A∈Z
rút gọn biểu thức
a) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
b) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
cho biểu thức
A= \(\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right).\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x>0; x khác 0
a) rút gọn biểu thức A
b) tính giá trị của x khi A > \(\frac{1}{6}\)
Câu 1: Tính giá trị biểu thức
A=\(\left(\sqrt{x}-2\right)^2-\left(\sqrt{x}+2\right)^2\) tại x=\(\sqrt{5}-2\)
B=\(\left(2\sqrt{x}+\sqrt{y}\right)\left(2\sqrt{x}-\sqrt{y}\right)\) với (x≥0,y≥0) tại x=\(\sqrt{2},y=\sqrt{2}-1\)
Câu 2: Rút gọn
A=\(\sqrt{81a}-\sqrt{49a}+\sqrt{121a}\left(a\ge0\right)\)tại a=3+2\(\sqrt{2};B=\sqrt{9b}-\frac{1}{3}\sqrt{54b}+\frac{1}{5}\sqrt{105b}\)(b≥0)
rút gọn bt A=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\) với x≥0, x≠4,x≠9