Lời giải:
ĐKXĐ: \(x\geq 0; x\neq 1\)
Ta có:
\(A=\frac{x-1}{\sqrt{x}-1}+\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}+\frac{(\sqrt{x}+1)^2}{\sqrt{x}+1}=\sqrt{x}+1+\sqrt{x}+1=2\sqrt{x}+2\)
Để \(A=6\Leftrightarrow 2\sqrt{x}+2=6\Leftrightarrow 2\sqrt{x}=4\Leftrightarrow \sqrt{x}=2\Rightarrow x=4\)
ĐK x ≥ 0 , x ≠ 1; x ≠ -1
\(A=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}+\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\)
=\(\sqrt{x}+1+\sqrt{x}+1\)
=\(2\sqrt{x}+2\)
Để A có giá trị =6 thì
\(2\sqrt{x}+2=6\Leftrightarrow2\sqrt{x}=4\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)(t/m)
Vậy ....