a) Gọi tọa độ của điểm D là \(\left( {x;y} \right)\) ta có: \(\overrightarrow {AB} = \left( {1;3} \right)\), \(\overrightarrow {DC} = \left( {5 - x;5 - y} \right)\)
Để ABCD là hình bình hành thì \(\overrightarrow {AB} \)= \(\overrightarrow {DC} \)
Suy ra \(\left\{ \begin{array}{l}5 - x = 1\\5 - y = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 4\\y = 2\end{array} \right.\)
Vậy để ABCD là hình bình hành thì tọa độ điểm D là \(D\left( {4;2} \right)\)
b) Gọi M là giao điểm của hai đường chéo, suy ra M là trung điểm của AC
Suy ra: \({x_M} = \frac{{{x_A} + {x_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2};{y_M} = \frac{{{y_A} + {y_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2}\)
Vậy tọa đọ giao điểm của hai đường chéo hình bình hành ABCD là \(M\left( {\frac{7}{2};\frac{7}{2}} \right)\)
c) Ta có: \(\overrightarrow {AB} = \left( {1;3} \right),\overrightarrow {AC} = \left( {3;3} \right),\overrightarrow {BC} = \left( {2;0} \right)\)
Suy ra: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {3^2}} = \sqrt {10} ,AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{3^2} + {3^2}} = 3\sqrt 2 \)
\(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{2^2} + {0^2}} = 2\)
\(\begin{array}{l}\cos A = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{AB.AC}} = \frac{{1.3 + 3.3}}{{\sqrt {10} .3\sqrt 2 }} = \frac{{2\sqrt 5 }}{5} \Rightarrow \widehat A \approx 26^\circ 33'\\\cos B = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{BA.BC}} = \frac{{\left( { - 1} \right).2 + \left( { - 3} \right)0}}{{\sqrt {10} .2}} = - \frac{{\sqrt {10} }}{{10}} \Rightarrow \widehat B = 108^\circ 26'\\\widehat C = 180^\circ - \widehat A - \widehat B = 180^\circ - 26^\circ 33' - 108^\circ 26' = 45^\circ 1'\end{array}\)