Cho tam giác ABC có AB= 12 cm , AC =16 cm . Từ B kẻ đường thẳng vuông góc với BC , đường thẳng này cắt đường thẳng AC tại E . a) Tính các cạnh của tam giác BCE b) Tính góc BEA( làm tròn lên độ) c) lấy điểm F nằm giữa B và E . TỪ b kẻ BH vuông góc với CF, H thuộc CF . CMR : tam giác CEF đồng dạng vs tma giác CHA
Cho tam giác ABC vuông tại A đường cao AH, AB=6, BC=10 a) Tính BH, HC, AH, góc BAH. b) Vẽ BD là tia phân giác của tam giác ABH ( D thuộc AC ). Kẻ AK vuông góc với BD tại K. Cmr: BH.BC=BK.BD. c) BD cắt AH tại S. Tính diện tích tứ giác SHCD?
Cho tam giác ABC vuông tại A có AB = c cm, AC = b cm. Vẽ tia Bx cắt cạnh AC tại E( E nằm giữa A và C). Trên tia Ex lấy điểm F thõa mãn \(\frac{c^2}{BE^2}+\frac{b^2}{BF^2}=1\).CM CF song song AB
Cho Tam giác ABC vuông tại A có AB=9 cm, BC=15, đường cao AH
a) Tính AH, CH
b) qua B vẽ đường thẳng vuông góc với BC cắt AC tại D. Tia phân giác của C cắt AB tại N và BD tại M. Chứng minh CN.CD=CM.CB
c) Chứng minh NA.CD=MD.CA
Tam giác ABC vuông ở A; AB=AC; M thuốc AC sao cho MC:MA=1:3. Kẻ đường vuông góc AC tại C cắt BM ở K; kẻ BE vuông góc với đường CK ở E
a. ABEC là hình gì?
b. CM: \(\dfrac{1}{AB^2}=\dfrac{1}{BM^2}+\dfrac{1}{BK^2}\)
Cho tam giác ABC vuông tại A, biết AB=6 cm, AC=8cm đường cao AH. a. Tính AH, HB, HC b. Qua B, kẻ Bx//AC và cắt tia AH tại M
Giúp e vớii e đang cần gấp:(. Ko cần vẽ hình cx đc ạ
Cho tam giác ABC vuông tại A, AH là đường cao.
a) BH = 3,6cm, CH = 6,4cm. Tính AH, AC, AB, góc HAC
b) Qua B kẻ Bx // AC. Bx cắt AH tại K. Chứng minh AH.AK = BH.BC
c) Kẻ KE vuông góc AC. Chứng minh \(HE=\dfrac{3}{5}KC\) (sử dụng số đo ở câu a)
d) Gọi I là giao điểm của các đường phân giác trong tam giác ABC. Gọi r là khoảng cách từ I đến BC. Chứng minh \(\dfrac{r}{AH}\ge\dfrac{1}{3}\)
Giúp em câu c và d ạ. Em cảm ơn mọi người.
1. Cho tam giác ABC vuông tại A, AB=15cm, AC=20cm.
a) Tính BC, góc B, góc C
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì? Tính chu vi và diện tích của tứ giác AMEN.
d) Chứng minh: \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AE}\)
Cho tam giác ABC vuông tại A , AH là đường cao , góc ABC =60° . GỌI M LÀ TRUNG ĐIỂM CỦA AB , N LÀ TRUNG ĐIỂM CỦA AC . Lấy D đối xứng với H qua M và E đối xứng với H qua N. a, Chứng minh AH^2=AD. AE b, tia phân giác của góc ABC cắt AC tại K. Cm: sin góc ABC= 2sin góc ABK × cos CBK