Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\frac{x^3}{y+1}+\frac{y+1}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{x^3}{y+1}.\frac{y+1}{4}.\frac{1}{2}}=\frac{3}{2}x\)
\(\frac{y^3}{x+1}+\frac{x+1}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{y^3}{x+1}.\frac{x+1}{4}.\frac{1}{2}}=\frac{3}{2}y\)
Cộng theo vế ta thu được:
\(B+\frac{x+y}{4}+\frac{3}{2}\geq \frac{3}{2}(x+y)\)
\(\Rightarrow B\geq \frac{5}{4}(x+y)-\frac{3}{2}\)
Mà cũng theo BĐT AM-GM thì \(x+y\geq 2\sqrt{xy}=2\)
\(\Rightarrow B\geq \frac{5}{4}.2-\frac{3}{2}=1\) (đpcm)
Dấu "=" xảy ra khi $x=y=1$