Cho biểu thức A= \(\frac{a^2+\sqrt{2}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a, Rút gọn A
b, Với a\(\ge\)1 hãy so sánh A và |A|
Cho a,b,c>0 tm: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+ \sqrt{a^2+c^2}=\sqrt{2018}\)
CMR \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b} \ge\frac{1}{2}\sqrt{2009}\)
Gỉa sử phương trình x2+ax+b=0 có 2 nghiệm lớn hơn 1. CMR:
\(\frac{a^2-a-2b}{b-a+1}\ge\frac{2\sqrt{b}}{1+\sqrt{b}}\)
Bài 4: Cho a, b, c là độ dài ba cạnh của một tam giác, p là nửa chu vi . CMR:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\) \(\ge\) \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 5: Cho x, y, z dương. CMR:
\(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}>2\)
Bài 6: Cho x, y, z dương thỏa mãn: xy + yz + zx = 1
CMR: \(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}\le2\left(x+y+z\right)\)
Cho A = \(1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\left(\frac{a-\sqrt{a}}{2\sqrt{a}-1}\right)\) Rút gọn A
P = \(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\frac{1}{2a\sqrt{a}}\) với a > 0 , a\(\ne\) 1
a) CMR : P = \(\frac{2}{a-1}\)
b) tìm giá trị của a để P = a
cho a,b,c ≥0. CMR:
a+b+\(\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
1) cho: 4a^3-3a+(b-1)\(\sqrt{2b+1}\)=0
biết \(\frac{-1}{2}\)=<b=<0 . Cmr: \(\sqrt{2b+1}\)+2a=0
2)cho (4a^2+1)a+(b-3)\(\sqrt{5-2b}\)=0
biết a>=0 Cmr: 2b+4a^2=5
Bài 1: CMR:
a, (4+\(\sqrt{3}\)). (4-\(\sqrt{3}\))=13
b, \(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}=2\)
c, \(\frac{\sqrt{1}}{2+\sqrt{3}}+\frac{\sqrt{1}}{2-\sqrt{3}}=4\)
d, \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=a-b\)(a>0, b>0, a≠b)
Bài 2: CMR:
a, \(\sqrt{a}+\frac{\sqrt{1}}{\sqrt{a}}\ge2\left(a>0\right)\)
b, a+b+\(\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\left(a,b>0\right)\)
c, \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xyz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\left(x,y,z>0\right)\)
d, \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=-8\sqrt{3}\)
e, \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\)=a-b(a>0, b>0, a≠b)
Bài 3: Tìm Min hoặc Max(nếu có):
a, \(\sqrt{x^2+9}\)
b, \(\frac{2}{\sqrt{x^2+1}}\)
c, 1-\(\sqrt{5+2x-x^2}\)