a) ĐK : x ≥ 0 ; x ≠ 2 ; x ≠ 3
A= \(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
=\(\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\text{}\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{x-4-x+3\sqrt{x}-\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{-1}{\sqrt{x}-3}\)
Vậy...
b)Ta có A<-1
⇒\(\frac{-1}{\sqrt{x}-3}\) <-1
⇒\(\frac{-1}{\sqrt{x}-3}\) +1<0
⇒\(\frac{\sqrt{x}-4}{\sqrt{x}-3}\) <0
⇒\(\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\end{matrix}\right.\)
⇒9< x <16
Vậy...
c) Ta có A = \(\frac{-1}{\sqrt{x}-3}\)
⇒2A=\(\frac{-2}{\sqrt{x}-3}\)
Để 2A ∈ Z thì \(\frac{-2}{\sqrt{x}-3}\) ∈ Z
⇒\(\sqrt{x}-3\) ∈ Ư(-2) =\(\left\{1;-1;2;-2\right\}\)
Ta có bảng
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 |
x | 16(tm) | 4(tm) | 25(tm) | 1(tm) |
Vậy...
OK!!! đó bạn