a,Cho A=\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\cdot2\cdot3\cdot4\cdot...\cdot98\)
CMR:A chia hết cho 99
b,Cho B=\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\) và B bằng phân số \(\frac{a}{b}\) .CMR A chia hết cho 97
a,A=\(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
b,B=\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{998\times999\times100}\)
c,C=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1\times98+2\times97+3\times96+...+98\times1}\)
Tìm A, biết:
A = \(\frac{1}{2}+\frac{3}{4}+\frac{5}{6}+\frac{7}{8}+...+\frac{99}{100}\)
Cho A=\(\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{99}}\)
CMR: A<\(\frac{5}{3}\)
Cho A = \(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...........+\frac{n}{5^{n+1}}+........+\frac{11}{5^{12}}\)với n \(\in\)N . Chứng minh rằng A < \(\frac{1}{6}\)
Tìm x,y biết :
a) \(\frac{3}{4}x+\frac{1}{5}=-\frac{1}{2}\)
b)\(-\frac{4}{5}+\left(\frac{1}{3}:y\right)=-\frac{5}{6}\)
CMR: A=1.2.3...2012(1+\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}⋮2012\))
Cho A= \(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}\)
B= \(\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\)
a, Rút gọn A= một cách hợp lý.
b, Tìm phân số \(\frac{A}{B}\).
Tính nhanh giá trị biểu thức sau:
a) \(-\frac{9}{10}\cdot\frac{5}{14}+\frac{1}{10}\cdot\left(-\frac{9}{2}\right)+\frac{1}{7}\cdot\left(-\frac{9}{10}\right)\)
b)\(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{11}\right)\cdot132\)
c)\(-\frac{2}{3}\cdot\left(\frac{8}{9}\cdot\frac{8}{13}-\frac{8}{27}\cdot\frac{3}{13}+\frac{4}{3}\cdot\frac{22}{39}\right)\)