a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\)
\(\Rightarrow2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\right)\)
\(\Rightarrow A=1-\dfrac{1}{2^{2017}}\)
Vậy \(A=1-\dfrac{1}{2^{2017}}\)
b) \(1-\dfrac{1}{2^{2017}}< 1\Rightarrow A< 1\)
Vậy A < 1