Đặt A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
=> A = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=> A = 1 - \(\dfrac{1}{100}\) = \(\dfrac{99}{100}\)
=> 1 = \(\dfrac{100}{100}\)
=> A < 1
A = 11.2+12.3+13.4+...+199.10011.2+12.3+13.4+...+199.100
=> A = 1−12+12−13+13−14+...+199−11001−12+12−13+13−14+...+199−1100
=> A = 1 - 11001100 = 9910099100
=> 1 = 100100100100
=> A < 1