Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng
a) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+4c}{b+4d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a+2c}{3b+2d}\)
c) \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-2b}{c-2d}\)
d) \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a-2b}{5c-2d}\)
Cho a+b+c+d khác 0 sao cho: \(\dfrac{b+c+d}{a}=\dfrac{a+c+d}{b}=\dfrac{b+a+d}{c}=\dfrac{c+b+a}{d}\)
Hãy tính: M = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}-\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho tỉ lệ thức: a/b = c/d. CM:
a, a/b=c/d=a+4c/b+4d
b, a/b=c/d=3a+2c/3b+2d
c, a/c=b/d=a-2b/c-2d
d, a/c=b/d=5a-2b/5x-2d
Giúp mk vs. Năn nit đóa. Mk sẽ tick choa.
cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . CMR :
a, \(\dfrac{5a+3b}{7a-2b}=\dfrac{5c+3d}{7c-2d}\)
b, \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
c, \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
( giả thiết các tỉ số trên đều có nghĩa )
Từ tỉ lệ thức a/b=c/d ta có thể suy ra a-2b/c-2d=-5a+.....c/3d+5b CÁC BẠN GIÚP MÌNH VỚI, MÌNH CẢM ƠN NHIỀU LẮM
Tìm a,b,c biết: \(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-5c}{2}\) và a+b+c=-50
Từ biểu thức \(\dfrac{a}{b}=\dfrac{c}{d}\) ta có \(\dfrac{a-2b}{c-2d}=\dfrac{-5a+....c}{3d-5b}\).Tìm số thích hợp diền vào chỗ trống.
cho \(\frac{a}{b}=\frac{c}{d}\)\(\left(c\ne\pm d\right)\) . chứng minh
a, \(\frac{2a+7b}{2a-7b}=\frac{2b+7d}{2c-7d}\)
b, \(\frac{5a^2+7ab}{9a^2-11b^2}=\frac{5c^2+7cd}{9c^2-11d^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng : \(\frac{5a+3b}{5a-3b}\) \(=\frac{5c+3d}{5c-3d}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) Chứng minh rằng: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)