a: Xét ΔBAC có
BM/BA=BN/BC=1/2
nên MN//AC và MN=1/2AC
Xet ΔDAC có DQ/DA=DP/DC=1/2
nên QP//AC và QP=1/2AC
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
b: Xét tứ giác MDPB có
MB//PD
MB=PD
=>MDPB là hình bình hành
a: Xét ΔBAC có
BM/BA=BN/BC=1/2
nên MN//AC và MN=1/2AC
Xet ΔDAC có DQ/DA=DP/DC=1/2
nên QP//AC và QP=1/2AC
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
b: Xét tứ giác MDPB có
MB//PD
MB=PD
=>MDPB là hình bình hành
Cho hình bình hành ABCD,gọi E là trung điểm AB,F là trung điểm của CD,chứng minh AECF là hình bình hành.gọi M là giao điểm của AF và BD.N là giao điểm CE và BD,chứng minh: +,DM+MN=NB +,chứng minh:AC,BD,EF đồng quy
Bài 6 :Cho hình bình hành ABCD, gọi E,F lần lượt là trung điểm của AB và CD
a) Tứ giác DEBF là hình gì?
b)C/m: AC,BD,EF đồng quy
c) Gọi giao điểm của AC với DE và BF thứ tự là M,N, chứng minh tứ giác EMFN là hình bình hành
d) Tính SEMFN khi AC = a, BC = b, AC ⊥ BD
Cho hình bình hành ABCD. Lấy M là trung điểm của AB, N là trung điểm của CD. Gọi I là giao điểm của AN và DM, K là giao điểm của BN và CM.
a) Chứng minh: MD // BN.
b) Chứng minh tứ giác INKM là hình bình hành.
c) Gọi O là giao điểm của AC và BD. Chứng minh rằng I, O, K thẳng hàng.
Cho hình bình hành ABCD. Lấy M là trung điểm AB, N là trung điểm CD. Gọi I là giao điểm của AN và DM, K là giao điểm của BN và CM.
a) Chứng minh MD // BN
b) Chứng minh tứ giác INKMlà hbh
c) Gọi O là giao điểm của AC và BD. Chứng minh rằng I, O, k thẳng hàng
cho hình bình hành abcd ac và bd cắt nhau tại o gọi ef lần lượt là trung điểm của ob và od
a) CM AECF là hbh
b) gọi N là giao điểm của CE và AB ,M là giao điểm của AF và CD . CM ,AN=CM và ba điểm M,O,N thẳng hàng
giúp mik vs
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA và I, K là trung điểm các đường chéo AC, BD.
Chứng minh: a) Các tứ giác MNPQ, INKQ là hình bình hành
b) Các đường thẳng MP, NQ, IK đồng quy
Bài 2: Cho hình bình hành ABCD. Gọi I và K lần lượt là trung điểm của AB, CD. Đường chéo BD cắt AK, CI lần lượt tại M, N. Chứng minh rằng:
a) AK//CI
b) DM = MN = NB
cho hình bình hành ABCD. Gọi K, I lần lượt là trung điểm của AB và CD. Gọi M, N là giao điểm của AI, CK với BD. Chứng minh: a) tam giác ADM=CBN b) góc ADM=NCA và IM//CN
Giúp mình với!
Cho hình bình hành ABCD . Gọi k , I lần lượt là trung điểm của các cạnh AB và CD . CM
a, Cm : AKCI là hình bình hành
b,Cm : BKDI là hình bình hành
c, Gọi M là giao điểm của AI và DK , N là giao điểm của KC và BI . Cm tứ giác MKNI là hình bình
d, Cm: M , N lần lượt là trung điểm của DK và KC
nhanh nha và cảm ơn nha