Ta có \(a^2+b^2+c^2+ab+bc+ac\ge6\)
\(=>2\left(a^2+b^2+c^2+ab+bc+ac\right)\ge12\)
\(=>2a^2+2b^2+2c^2+2ab+2bc+2ac\ge12\)
\(=>a^2+b^2+c^2+a^2+b^2+c^2+2ab+2bc+2ac\ge12\)
Do \(a+b+c=3\)
\(=>\left(a+b+c\right)^2=9\\ =>a^2+b^2+c^2+2ab+2bc+2ac=9\)
Thế vào biểu thức \(a^2+b^2+c^2+a^2+b^2+c^2+2ab+2bc+2ac\ge12\)
Ta có \(a^2+b^2+c^2+9\ge12\)
\(=>a^2+b^2+c^2\ge3\) (1)
Ta có \(\begin{cases}a^2+b^2+c^2+2ab+2bc+2ac=9\\a^2+b^2+c^2+ab+bc+ac\ge6\end{cases}\)
\(=>\left(a^2+b^2+c^2+2ab+2bc+2ac\right)-\left(a^2+b^2+c^2+ab+ac+bc\right)\ge3\)
\(=>\left(2ab+2ac+2bc\right)-\left(ab+ac+bc\right)\ge3\)
\(=>ab+bc+ac\ge3\) (2)
Từ (1) và (2)
\(=>a^2+b^2+c^2+ab+bc+ac\ge6\)