§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phạm thảo

cho a,b,c>0 và a+b+c=3 cmr

\(a^3+b^3+c^3+\dfrac{15}{4}abc\ge\dfrac{27}{4}\)

Akai Haruma
21 tháng 4 2018 lúc 23:14

Lời giải:
Ta có:

\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)

\(=27-3(3-a)(3-b)(3-c)\)

\(=27-3[27-9(a+b+c)+3(ab+bc+ac)-abc]\)

\(=27-3[3(ab+bc+ac)-abc]=27-9(ab+bc+ac)+3abc\)

Do đó:

\(A=a^3+b^3+c^3+\frac{15}{4}abc=27-9(ab+bc+ac)+\frac{27}{4}abc(*)\)

Áp dụng BĐT Schur :

\(abc\geq (a+b-c)(b+c-a)(c+a-b)\)

\(\Leftrightarrow abc\geq (3-2a)(3-2b)(3-2c)\)

\(\Leftrightarrow abc\geq 27-18(a+b+c)+12(ab+bc+ac)-8abc\)

\(\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27\)

\(\Leftrightarrow 3abc\geq 4(ab+bc+ac)-9\)

\(\Rightarrow \frac{27}{4}abc\geq 9(ab+bc+ac)-\frac{81}{4}(**)\)

Từ \((*); (**)\Rightarrow A\geq 27-\frac{81}{4}=\frac{27}{4}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

Đinh Bảo Như
23 tháng 4 2018 lúc 19:18

Ta có:

a3+b3+


Các câu hỏi tương tự
Phạm Lợi
Xem chi tiết
Phạm Lợi
Xem chi tiết
Eren
Xem chi tiết
phạm thảo
Xem chi tiết
Lightning Farron
Xem chi tiết
Lục Hoàng Phong
Xem chi tiết
Chuppybaek
Xem chi tiết
My My
Xem chi tiết
Lục Hoàng Phong
Xem chi tiết