Ta có: \(a+b+c=0\)
⇒\(\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)
mà \(a^2+b^2+c^2=1\)
nên \(2ab+2ac+2bc=-1\)
\(\Leftrightarrow2\cdot\left(ab+ac+bc\right)=-1\)
\(\Leftrightarrow\left(ab+ac+bc\right)^2=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Ta có: \(a^2+b^2+c^2=1\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4+\frac{1}{2}=1\)
hay \(a^4+b^4+c^4=1-\frac{1}{2}=\frac{1}{2}\)(đpcm)
Ta có: a+b+c=0
=> (a+b+c)2 = \(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
mà \(a^2+b^2+c^2=1\) => 1 + 2(ab + bc + ac) = 0
=> 2(ab + bc + ac) = -1 => ab + bc + ac = \(\frac{-1}{2}\)
=> (ab + bc + ac)2 = \(\left(\frac{-1}{2}\right)^2\)
=> a2b2 + b2c2 + a2c2 + 2(ab2c+abc2+a2bc) = \(\frac{1}{4}\)
=> a2b2 + b2c2 + a2c2 + 2abc(a+b+c) = \(\frac{1}{4}\)
mà a+b+c = 0 => a2b2 + b2c2 + a2c2 = \(\frac{1}{4}\)
Do a2 + b2 + c2 =1
=> (a2 + b2 + c2)2 = a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2)=1
=> a4 + b4 + c4 + 2.\(\frac{1}{4}\) = 1
=> a4 + b4 + c4 = 1 - 2.\(\frac{1}{4}\) =\(\frac{1}{2}\)
Bạn không hiểu chỗ nào thì hỏi lại mình nhé