a: Xét ΔBDA vuông tại D và ΔBAC vuông tại A co
góc B chung
=>ΔBDA đồng dạng với ΔBAC
b: ΔBDA vuông tại D có DE vuông góc AB
nên AE*AB=AD^2
ΔDAC vuông tại D có DF vuông góc AC
nên AF*AC=AD^2
=>AE*AB=AF*AC
a: Xét ΔBDA vuông tại D và ΔBAC vuông tại A co
góc B chung
=>ΔBDA đồng dạng với ΔBAC
b: ΔBDA vuông tại D có DE vuông góc AB
nên AE*AB=AD^2
ΔDAC vuông tại D có DF vuông góc AC
nên AF*AC=AD^2
=>AE*AB=AF*AC
ho tam giác vuông abc vuông tại a có ab=6cm,ac=8cm. kẻ đường cao ah.
a) chứng minh tam giác abc đồng dạng với tam giác hba
b)tính độ dài các cạnh bc, ah,bh
c)gọi i và k lần lượt là hình chiếu của h lên cạnh ab và ac. Chứng minh ai.ab=ak.ac
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.
cho tam giác abc vuông tại B (AB<BC) đường phân giác BD
a/chứng minh tam giác ADB đồng dạng với tam giác ABC
b/cho AB=15cm, BC=20cm tính độ dài AC,AD,DC
c/gọi M,N lần lượt là hình chiếu của D trên AB, AC chứng minh DM×BA=BN×BC
Cho tam giác ABC vuông tại A (AB < AC), với đường cao AD.
a) Chứng minh tam giác ABC đồng dạng với tam giác DBA .
b) Trên đoạn AD lấy điểm E, gọi G là hình chiếu của C trên BE. Chứng minh BD.BC = BE.BG.
c) Trên đoạn CE lấy điểm F sao cho BF = BA. Chứng minh góc BEF bằng góc BFG
Cho tam giác nhọn ABC, AH là đường cao. Gọi E,F lần lượt là hình chiếu của H trên cạnh AB và AC. Đường thẳng EF và BC cắt nhau tại D
a. chứng minh tam giác AFH đồng dạng tam giác AFC
b.chứng minh AH^2=AE.AB
c.chứng minh tam giác AEF đồng dạng tam giác ACB
d.Giả sử diện tích tam giacs EHF bằng ba lần diện tích tam giác DHE. tínhtỉ số HE/HF
cho △ABC vuông tại A, phân giác BD . Gọi E,F lần lượt là hình chiếu của A;C lên BD
a) Chứng minh:△ABE∼△CBF và △AED ∼△CFD.
b)Chứng minh: EB.DF=BF.DEE
c)Vẽ AH⊥BC.Chứng minh: AH2 =HB.HC
d) Cho BH=9cm; HC=16cm.Tính các cạnh △ABC
Bài 1: Cho tam giác ABC vuông tại A có đường phân giác BD, đường trung tuyến AM, đường cao AH.
a) Tính AB, BC, AH, AM. Biết AD = 3 cm; CD = 5 cm.
b) Gọi I, K lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng AM vuông góc vs IK.
Cho tam giác ABC vuông tại A , đường cao AH .Đường phân giác củ góc ABC cắt AC tại D và cắt AH tại E A) Chứng minh tam giác ABC đồng dạng tam giácHBA và AB^2=BC.BH B) biết AB =9cm, BC= 15cm. Tính DC và AD C) gọi I là trung điểm của ED .Chứng minh : BIH=ACB Hộ mk với ạ 😢 Vẽ hình hộ mik luôn mai mik thi òi ạ Thank m.n
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC). Gọi D và E lần lượt là
hình chiếu của H trên AB và AC. Chứng minh rằng:
a, AEHD là hình chữ nhật
b, tam giác ABH đồng dạng tam giácAHD
c. HE ^ 2 = AE.EC