( Đề thi HK II năm học 2018_2019) Cho tam giác nhọn ABC (AB < AC), đường cao AH. a) Vẽ HD song song AC (D thuộc AB). Giả sử BD = 4 cm, BH = AD = 6 cm. Tính HC. b) Kẻ HE vuông góc với AC tại E. Chứng minh: AHE ∽ ACH, suy ra AH2 = AE.AC. c) Kẻ HF vuông góc với AB tại F. Chứng minh AEF = ABC
[ giúp mình nha ]
Cho tam giác ABC vuông tại A , AH là đường cao . D,E là hình chiếu vuông góc của H trên AB , AC .
a, Chứng mình : Tam giác ABH đồng dạng CAH
b, Chứng minh : AD.AB=AE.AC-AH
c, Chứng minh : Đường trung tuyến CM của tam giác ABC đi qua trung điểm của HE
cho tam giác ABC vuông tại A (AC>AB),đường cao AH.Trên tia HC lấy điểm D sao cho HD=AH.Qua D kẻ đường thẳng vuông góc với BC,cắt cạnh AC tại E.a)Chứng minh tam giác ABC đồng dạng tam giác HAC;b)Chứng minh EC.AC=DC.BC;c)Chứng minh tam giác BEC đồng dạng tam giác ADC và tam giác ABE vuông cân
cho tam giác abc vuông tại a (ab<ac).vẽ ah vuông góc với bc tại h.
a/chứng minh tam giác HAC đồng dạng tam giác ABC
b/giả sử AB=15cm,AC=20cm.tính độ dài các cạnh AH
c/vẽ tia phân giác của góc BAH cắt cạnh BH tại D.chứng minh BD/HD=BC/AC.
giải giúp mình với ạ.
Cho ΔABC vuông tại A, có cạnh AB=3cm cạnh AC=4cm, AH là đường cao
a, chứng minh: ΔABC đồng dạng với ΔHBA
b,chứng minh: AB2 = BH.BC; AH2 = HB.HC
c, đường phân giác góc ABC cắt AH tại E và AC tại D, tính \(\dfrac{Sabc}{Shbe}\)
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM, kẻ MK vuông góc với AC. Kẻ ME vuông góc với AB tại E, AK/AC + AE/AB. Chứng minh AE/AC=AF/AB.
cho tam giá ABC vuông A đường cao AH. D,E lần lượt là hình chiếu của H trên AB và AC Bạn đã gửi a) cm tam giác HAC ĐỒNG GIẠNG tam giác ACB.
b cho AB=3cm; AC=4cm, tính BC,AH,BH.
c) chứng minh AD.AB=AF.AC.
d) AH^4=BD.BA.CE.CA
help vẽ hình nữa nha
Cho tam giác ABC vuông tai A (AB<AC) có duong cao AH. Goi D,E lan luot là hình chieu cua H lên AB và AC.Goi M là trung diem cua BC
*AD.AB=AH2 =AE.AC
*AD.AC+AE.AB=AB.AC
a) Chung minh :
*DB.DA+EC.EA=AH2
*BD.BA+CE.CA=AB2+AC2-2AH2
b) Chung minh tam giác ADE - tam giác ACB; AM vuông DE tai S và 1/AS=1/HB+1/HC
c)AF là phân giác góc BAH; AJ là phân giác góc CAH.Chung minh: *AB+AC=BC+FJ
*FH.FC=BF.CH
*JH.JB=JC.BH
d) AJ là phân giác cua góc HAC, goi L là trung diem cua AJ,BL cat AH tai N. Trên canh HJlay diem K (HK>KJ), Kéo dài KN cat AB tai Q. Chung minh: BA/BQ+BJ/BK+2.BL/BN
e) Goi X,Y,Z lan luot là tâm các duong phân giác trong cua tam giác ABH,ACH và AHM. Chung minh tam giác HXY-tam giác ABC và tính so đo góc BZM
Bài 3: Cho tam giác ABC vuông tại A có BC = 20 cm, AC = 16 cm. Vẽ đường cao AH.
a) Chứng minh: HBA ABC; HBA HAC.
b) Chứng minh: AB2 = BH. BC; AH2 = HB.HC
c) Tính AB, AH, BH.
d) Vẽ đường phân giác AD của tam giác ABC (D BC). Tính BD, CD. (Kết quả làm tròn đến chữ số thập phân thứ nhất).
e*) Trên AH lấy điểm K sao cho AK = 3,6cm. Từ K kẻ đường thẳng song song với BC, cắt AB và AC lần lượt tại M và N. Tính diện tích tứ giác BMNC.