a: \(BC=\sqrt{c^2+b^2}\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{bc}{\sqrt{c^2+b^2}}\)
\(AI=\dfrac{AH^2}{AB}=\dfrac{bc}{\sqrt{c^2+b^2}}\cdot\dfrac{1}{c}=\dfrac{b}{\sqrt{b^2+c^2}}\)
\(AK=\dfrac{AH^2}{AC}=\dfrac{bc}{\sqrt{c^2+b^2}}\cdot\dfrac{1}{b}=\dfrac{c}{\sqrt{c^2+b^2}}\)
b: \(\dfrac{BI}{CK}=\dfrac{HB^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\dfrac{HB^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}=\dfrac{c^3}{b^3}\)