Cho tam giác ABC vuông tại C.Trên AB lấy Đ sao cho AD=AB.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E , AE cắt CD tại I
a, cm AE là tia phân giác của góc CAB
b, AD là đường trung trực của CD
c, So sánh CD và BC
d, M là trung điểm của BC, DM cắt BI tại G , CG cắt DB tại K. Cm K là trung điểm của DB.
Cho tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm.
a) Chứng minh tam giác ABC vuông tại A
b) Vẽ tia phân giác BD của góc ABC ( D thuộc AC ), từ D Vẽ BE vuông góc với BC ( E thuộc BC)
c) Kéo dài ED và BA cắt nhau tại F. Chứng minh DF > De.
d) Chứng minh đường thẳng BD là đường trung trực của đoạn thẳng FC
cho tứ giác abdc có b=c=90 độ vaf d lớn hơn 90 độ . gọi h đối xứng với d qua m trung điểm của bc
a,cmr:bhcd là hình bình hành
b,từ m kẻ vuông góc với bc cắt ad tại i
c/m:ah=2mi
c,từ h kẻ đường thẳng vuông góc với mh cắt ab ,ac lần lượt tại f,e
c/m:tam giác mef cân
1. Cho tam giíac ABC nhọn, kẻ DE//BC (D thuộc AB, E thuộc AC).
a) CMR tam giác ABC đồng dạng tam giác ADE
b) Cho biết AB=15cm, BC=20cm, DE=12cm. Tính AD, BD.
c) Trên BC lấy điểm F sao cho CF= 12cm. Chứng minh tam giác DBF đồng dạng tam giác ABC
2. Cgo tam giác ABC có AB=6cm, AC= 8cm, BC= 10cm, vẽ đường cao AH.
a) CM: AB2= BC.BH
b) CM: tam giác HBA đồng dạng tam giác HAC.
c) CM: tam giác ABC vuông
d) Vẽ đường phân giác AD. Tính DB, DC
Câu 1 :Cho tam giác ABC. Giá trị lớn nhất của biểu thức P= 2(sin A + sin B) - 2cos C
Câu 2 :Cho hình tròn (C) : \(\left(x-1\right)^2+\left(y-2\right)^2=4\) và đường thẳng (d): x-y+7=0. Gọi M(a;b) là điểm thuộc (d) mà từ đó có thể kẻ được hai tiếp tuyến MA và MB tới (C) sao cho độ dài AB đạt giá trị nhỏ nhất. Khi đó a+b bằng
Giúp mình với
CHỦ ĐỀ PHƯƠNG TRÌNH ĐƯỜNG THẲNG
Bài 1) Viết PTTQ của đường thẳng d
a) Qua M(-1;-4) và song song với đường thẳng 3x+5y-2=0
b) Qua N(1;1) và vuông góc với đường thẳng 2x+3y+7=0
Bài 2) Viết PT đường thẳng đi qua M(2;5) và cách đều hai điểm P(-1;2),Q(5;4)
Bài 3) Cho đường thằng d1: 2x-y-2=0 ; d2: x+y+3=0 và điểm M(3;0). Viết phương trình đường thẳng D đi qua M, cắt d1 và d2 lần lượt tại điểm A và B sao cho M là trung điểm của đoạn thẳng AB.
Bài 4) Cho tam giác ABC biết A(2;1) B(-1;0) C(0;3)
a) Viết PTTQ của đường cao AH
b)Viết PTTQ của đường trung trực của đoạn thẳng AB
c) Viết PTTQ của đường thẳng BC
d) Viết PTTQ của đường thẳng qua A và song song với đường thẳng BC
Bài 5) Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình đường thẳng ΔΔsong song với đường thẳng d: 3x-4y+1=0 và cách d một khoảng bằng 1
Bài 6) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC biết phương trình cạnh BC: x-2y+5=0, phương trình đường trung tuyến BB': y-2=0 và phương trình đường trung tuyến CC': 2x-y-2=0. Tìm tọa độ các đỉnh của tam giác.
Bài 7) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thằng d1: x-y-4=0 , d2: 2x=y-2=0 và 2 điểm A(7;5) B(2;3). Tìm điểm C trên đường thẳng d1 và điểm D trên đường thằng d2 sao cho tứ giác ABCD là hình bình hành.
Bài 8) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm I(6;2) là giao điểm của hai đường chéo AC và BD. Điểm M(1;5) thuộc đường thẳng AB và trung điểm A của cạnh CD thuộc đường thằng d: x+y-5=0. Viết phương trình đường thẳng AB.
CHỦ ĐỀ ĐƯỜNG TRÒN:
Bài 9) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thằng d: 2x-y-5=0 và hai điểm A(1;2) B(4;1). Viết phương trình đường tròn (C) có tâm thuộc d và đi qua hai điểm A,B
Bài 10) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d1: x+3y+8=0, d2: 3x-y+10=0 và điểm A(-2;1). Viết phương trình đường tròn (C) có tâm thuộc d1 đi qua điểm A và tiếp xúc với d2
Bài 11) Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(-1;1) B(3;3) và đường thẳng d: 3x-y+8=0. Viết phương trình đường tròn (C) đi qua hai điểm A,B và tiếp xúc với d
Bài 12) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d: x+2y-3=0 và ΔΔ: x+3y-5=0. Viết phương trình đường tròn (C) có bán kính bằng 2√1052105, có tâm thuộc d và tiếp xúc với ΔΔ
Bài 13) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): (x−1)2+(y−2)2=8(x−1)2+(y−2)2=8
a) Viết phương trình tiếp tuyến của đường tròn (C) tại điểm A(3;-4)
b) Viết phương trình tiếp tuyến của đường tròn (C) đi qua điểm B(5;-2)
c) Viết phương trình tiếp tuyến của đường tròn (C), biết tiếp tuyến vuông góc với đường thẳng d: x+y+2014=0
d) Viết phương trình tiếp tuyến của đường tròn (C), biết tiếp tuyến tạo với trục tung một góc 45 độ
CHỦ ĐỀ ELIP
Bài 14) Xác định các đỉnh, độ dài các trục, tiêu cự, tiêu điểm, tâm sai của elip có phương trình sau:
a) x22+y22=1x22+y22=1
b) 4x2+25y2=1004x2+25y2=100
Bài 15) Lập phương trình chính tắc của Elip, biết
a) Elip đi qua điểm M(2;53)(2;53) và có một tiêu điểm F1(-2;0)
b) Elip nhận F2(5;0) là một tiêu điểm và có độ dài trục nhỏ bằng 4√646
c) Elip có độ dài trục lớn bằng 2√525 và tiêu cự bằng 2.
d) Elip đi qua hai điểm M(2;−√2−2) và N(−√6;1)(−6;1)
Bài 16) Lập phương trình chính tắc của Elip, biết:
a) Elip có tổng độ dài hai trục bằng 8 và tâm sai e=1√2e=12
b) Elip có tâm sai e=√53e=53 và hình chữ nhật cơ sở có chu vi bằng 20.
c) Elip có tiêu điểm F1(-2;0) và hình chữ nhật cơ sở có diện tích bằng 12√5
HELP ME ĐI MẤY BẠN ƠI !!!!
cho tam giác ABC. hai điểm M và N thứ tự chuyển động trên 2 tia AB và Ac sao cho BM=CN. cmr đường trung trực của MN luôn đi qua một điểm cố địnhgiúp mình giải bài này với mọi người đang cần rất gấp
Bài 2: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O bán kính R và AH là đường cao của tam giác ABC. Gọi M, N thứ tự là hình chiếu của H trên AB, AC.
a. Chứng minh tứ giác AMHN là tứ giác nội tiếp
b. Chứng minh ∠ABC = ∠AMN
c. Chứng minh OA⊥MN
d. Cho biết AH=R√2. Chứng minh M, O, N thẳng hàng
Cho tam giác abc Vuông tại A có Oa bằng 6cm Trên tia đối của tia oa Lấy điểm A’ sao cho OA’ Bằng một phần hai OA Từ A’ Vẽ đường thẳng vuông góc với AA’ tại A’,Đường này cắt OB kéo dài tại B’.Tính OB và AB,biết A’B’=4,2cm