Cho \(\Delta ABC\) có đường trung tuyến AM, đường thẳng d đi qua trung điểm I của AM cắt các cạnh AB và AC. Gọi \(A',B',C'\) lần lượt là hình chiếu của A, B, C trên d. C/minh: \(AA'=\dfrac{BB'+CC'}{2}\)
Cho tam giác ABC vuông tại A (AB<AC), phân giác BD (D thuộc AC). Gọi M là trung điểm của BC.
Đường thẳng MD cắt đường thẳng BA tại N. Qua A kẻ đường thẳng song song với BC cắt NM, NC thứ tự tại P và Q
a) CMR: PA=PQ
b) Qua B kẻ đường thẳng vuông góc với BC cắt tia CA tại E. CMR: DA.EB=DC.EA
c) CM: Hai tam giác EBD và NBD có diện tích bằng nhau
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H. Qua B kẻ đường thẳng vuông góc với Ab tại B, qua C kẻ đường thẳng vuông góc với AC tại C, chúng cắt nhau tại K. Gọi M là trung điểm của BC
a) Chứng minh: H, M, K thẳng hàng
b) Tam giác ABC thỏa mãn điều kiện gì để tứ giác BHCK là hình thoi
c) Gọi O là trung điểm của AK, CH giao với MA tại G. Chứng minh: G là trọng tâm của tam giác ABC
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T
Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM.
a. CMR: góc HAB = góc MAC.
b. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC. CMR: AM vuông góc với DE.
Cho \(\Delta ABC\) có trung tuyến AM. Từ điểm D bất kỳ trên cạnh BC kẻ đường thẳng song song với AM, cắt AB ở E, cắt đường thẳng AC ở F. CMR: DE+DF=2AM
Cho \(\Delta ABC\) có trung tuyến AM. Từ điểm D bất kỳ trên cạnh BC kẻ đường thẳng song song với AM, cắt AB ở E, cắt đường thẳng AC ở F. CMR: DE+DF=2AM
Cho tam giác ABC nhọn có AA' ,BB',CC' là các đường cao cắt nhau tại H
a , C/M BC' *AB + CB'* AB = BC^2
b, HB*HC / AB*AC + AH*HB / BC*AC + HC* AH / BC *AB =1
C Gọi H là trung điểm của BC .Qua H kẻ đt vuông góc với BH cắt AB , AC ở M , N
C/m H là trung điểm MN
Cho tam giác nhọn ABC có các đường cao AD, BE cắt nhau tại H. Gọi O là trung điểm của BC và K là điểm đối xứng với H qua O. Kẻ đường thẳng qua H vuông góc với HK cắt các đường thẳng AB, AC lần lượt tại M và N.Chứng minh: HM=HN