Cho tam giác ABC cân tại A. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho AM = CN. Gọi I là trung điểm của MN. Đường thẳng qua I song song với BC cắt AB, AC lần lượt tai D, E. Chứng minh rằng DE là đường trung bình của tam giác ABC.
Bài 1: Cho ΔABC; I là trung điểm BC. Trên AB lấy M; N sao cho
AM = MN = NB. Đường thẳng CM cắt AI tại K. CMR: KA = KM
Bài 2: Cho ΔABC vuông tại A có AB = 12 cm, BC = 13cm. Gọi M, N lần lượt
là trung điểm của AB và BC.
a. Chứng minh: MN vuông góc AB
b. Tính MN?
Bài 3: Cho ΔABC có AB = 16cm, BC = 20cm, AC = 12cm
a. CM: ΔABC vuông tại A
b. Gọi M là trung điểm của BC. Kẻ MF vuông góc AC tại F. CM: FA = FC
c. Gọi E là trung điểm của AB. CM: ME vuông góc với AB và tính độ dài
ME.
Cho tam giác ABC ( AB< AC). Trên AB lấy M, AC lấy N sao cho BM=CN. Gọi E là trung điểm của MN, F là trung điểm của BC, I là trung điểm BN.
a) CM tam giác IEF cân
b) Đường thẳng EF cắt AB, AC tại G và H. CM AG=AH
Câu 2 : (7đ) Cho hình thang MNPQ ( MN // PQ ) . Gọi A, B, lần lượt là trung điểm của MQ, NP. AB cắt MP tại I, cắt NQ tại K.Chứng minh MA = AP, NB = BQ
Cho tam giác ABC, trên tia đối BA và CA lần lượt lấy P và Q sao cho BP= CQ. Gọi M, N lần lượt là trung điểm các đoạn BC và PQ, O là trung điểm PQ. Đường thẳng MN cắt AB, AC tại K và I. Chứng minh tam giác OMN và tam giác AIK là những tam giác cân
Bài 1: Cho △ ABC, đường trung tuyến AM. Gọi D là trung điểm của AM. Gọi E là giao của BD và AC. Kẻ MN // BE cắt AC tại N. CM rằng:
a) DE là đường trung bình của △AMN;
b) N là trung điểm của EC;
c) AE = EN = NC
Bài 2: Cho △ ABC, các đường trung tuyến AM,CN cắt nhau tại K. Gọi I, H lần lượt là trung điểm của AK, CK. CM rằng:
a) MN là đường trung bình của △ BAC
b) MN // IH
c) MN = IH
Bài 3: Cho △ ABC, đường trung tuyến AM. Lấy điểm D, E thuộc cạnh AB sao cho AD = DE = EB. Gọi I là giao của CD và AM. CM rằng:
a) ME // DC
b) I là trung điểm của AM
c) DC = 4DI
Cho tam giác ABC, trên AB lấy D, trên AC lấy E. Gọi MN lần lượt là trung điểm của BE,CD. MN cắt AB,AC lần lượt tại P,Q. Hỏi góc D và góc E phải có điều kiện gì để tam giác APQ cân tại A?
Bài 2: Cho tam giác ABC , đường trung tuyến AM, trọng tâm G . Vẽ đường thẳng d đi qua G, cắt các cạnh AB, AC . Gọi A’, B’, C’, M’ lần lượt là hình chiếu của các điểm A, B, C, M trên đường thẳng d. Chứng minh a/ BB’+CC’=2MM’ b/ AA’=BB’+CC’.
Cho tam giác ABC vuông tại A có AB=3cm, AC=4cm, Gọi P,Q lần lượt là trung điểm của AB,AC. Tính PQ