Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Tiền Châu

cho a,b,c thỏa mãn \(a^2+b^2+c^2=3\)

chứng mỉnh rằng \(A=\sqrt{\dfrac{a^2}{a^2+b+c}}+\sqrt{\dfrac{b^2}{b^2+c+a}}+\sqrt{\dfrac{c^2}{c^2+a+b}}\le\sqrt{3}\)

Lightning Farron
16 tháng 10 2017 lúc 22:55

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow a^2+b+c\ge\dfrac{\left(a+b+c\right)^2}{1+b+c}\Rightarrow\sqrt{\dfrac{a^2}{a^2+b+c}}\le\dfrac{a\sqrt{1+b+c}}{a+b+c}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(A\le\dfrac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(a\sqrt{1+b+c}=\dfrac{\sqrt{3a}\sqrt{a+ab+bc}}{\sqrt{3}}\le\dfrac{4a+ab+bc}{2\sqrt{3}}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(\Rightarrow\dfrac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\dfrac{2(a+b+c)+(ab+bc+ca)}{\sqrt{3}(a+b+c)}\)

\(\le\dfrac{2(a+b+c)+\dfrac{(a+b+c)^2}{3}}{\sqrt{3}(a+b+c)}\le\dfrac{2+\dfrac{a+b+c}{3}}{\sqrt{3}}\le\sqrt{3}\)

Hay \(A\le\sqrt{3}\) *ĐPCM*

Lại Thu Trang
16 tháng 10 2017 lúc 22:45

đề sai

Vũ Tiền Châu
16 tháng 10 2017 lúc 23:11

các bạn ơi đề mik thiếu là a,b,c >0 nữa cơ cho xin lỗi nhé


Các câu hỏi tương tự
Sóc nâu
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
michelle holder
Xem chi tiết
Phan PT
Xem chi tiết
Trà My Nguyễn Thị
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Nguyễn Thị Hà Uyên
Xem chi tiết