Cho a,b,c là các số thực dương thoả mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3\)Chứng minh rằng \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}+\dfrac{1}{2}\left(ab+bc+ca\right)\ge3\)
Cho a, b, c là các số thực dương thỏa mãn: a+b+c+ab+bc+ac=6. Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)
Cho a, b, c là độ dài 3 cạnh của 1 tam giác. CMR: \(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho a, b c > 0 thoả mãn a+b+c=3. Chứng minh rằng: \(\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}\ge3\)
Cho các số dương \(a,b,c\) thoả mãn \(a+b+c=3\). Chứng minh rằng: \(\dfrac{a^2+bc}{b+ca}+\dfrac{b^2+ca}{c+ab}+\dfrac{c^2+ab}{a+bc}\ge3\)
cho 3 số a,b,c là 3 cạnh của một tam giác thỏa mãn:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{3}{2}\)
chứng minh tam giác abc đều
cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge1\)
chứng minh rằng \(\dfrac{a+b}{\sqrt{ab+c}}+\dfrac{b+c}{\sqrt{bc+a}}+\dfrac{c+a}{\sqrt{ca+b}}\ge3\sqrt[6]{abc}\)
1) Cho ba số a, b, c \(\in\) [0;1] (nghĩa là từng số lớn hơn hoặc bằng 0 và bé hơn hoặc bằng 1). Chứng minh rằng: \(ab\le a^ab^b\).
2a0 Cho a, b, c, thỏa mãn \(a+b+c=1\). Chứng minh rằng: \(\dfrac{1}{3^a}+\dfrac{1}{3^b}+\dfrac{1}{3^c}\ge3\left(\dfrac{a}{3^a}+\dfrac{b}{3^b}+\dfrac{c}{3^c}\right)\)
cho a,b,c là các số dương thỏa mãn điều kiện \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3\)
Chứng minh rằng: \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}+\dfrac{1}{2}\left(ab+bc+ac\right)\ge3\)