\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BI}+\overrightarrow{IA}+\overrightarrow{CI}+\overrightarrow{IA}=2\cdot\overrightarrow{IA}\)
\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BI}+\overrightarrow{IA}+\overrightarrow{CI}+\overrightarrow{IA}=2\cdot\overrightarrow{IA}\)
có ai biết làm toán hình ko chỉ mình với
BÀI 1 : Cho hình bình hành ABCD tâm O . chứng minh rằng :
a) vecto CO - vecto OB = vecto BA b) vecto AB - vecto BC = vecto DB
c) vecto DA - vecto DB = vecto OD - vecto OC d) vecto DA - vecto DB + vecto DC = vecto O
BÀI 2 : chứng minh rằng 4 điểm A,B,C,D bất kì ta có :
vecto AC + vecto BD = vecto AD + vecto BC
BÀI 3 : cho tứ giác ABCD . Gọi I , J là trung điểm AD , BC ; P là trung điểm IJ.
a) tính vecto AB + vecto DC + vecto BD + vecto CA
b) CMR : vecto AB + vecto CD = vecto AD + vecto CB , vecto AB + vecto DC = 2IJ
c) CMR : vecto PA + vecto PB + vecto PC + vecto PD = vecto 0 , vecto AB + vecto AC + vecto AD = 4AP
MÌNH CẦN GẤP LẮM GIÚP MÌNH NHA
chõ điểm A B C D và M N lần lượt là trung điểm của AB CD .I là trung điểm của BC
cm 2 (vecto AB + vecto AI +vecto NA + vecto DA )
cho tứ giác ABCD . EF lần lượt là trung điểm AB và CD . G là trung điểm EF với O là điểm tùy ý chứng minh
a) vecto AB +vecto AC+vecto AD = 4 vecto AG
b) vecto GA + vecto GB + vecto GC + vecto GD = vecto 0
c) vecto OG = 1/2 ( vecto OA + vecto OB + vecto OC + vecto OD)
Cho 4 diem A B C D. Lấy I và J là trung diem cua AB và CD. Chứng minh vecto AC+ vecto BD= vecto AD+ vecto BC= 2 vecto IJ
Cho tam giác ABC vuông cân tại C, AB = 2a và I là trung điểm của BC. Tính |vecto AI - vecto IB|
Cho tam giác abc vuông tại b. AB=3a,BC=4a, vẽ điểm M sao cho Vecto MA+vecto MB-vecto MC=vecto 0,N là trung điểm của AC.Tính a dộ dài của vecto MN
Cho tam giác ABC có trọng tâm G, gọi M, N, P lần lượt là trung điểm của BC, CA, AB |
a) Tìm các vectơ bằng vecto MN b) Dựng điểm I sao cho vecto AG bằng vecto PI
c) Tứ giác BGMI là hình gì ?
a.Hình chữ nhật ABCD. AB = 4a, BC = 2a, AC∩ BD = {O}. M là trung điểm CD
Tính tổng vecto AB+OM
b.Cho tam giác ABC đều. AB = a. M, N là trung điểm AC và AB. Tính tổng vecto CM +BN
cho hình vuông abcd cạnh a d là đường thẳng đi qua a // bd . gọi m là điểm thuộc đường thẳng d sao cho |vecto ma + vecto mb + vecto mc - vecto md| nhỏ nhất .tính theo a độ dài vecto md