Ta thấy: `(a-b)^2≥0`
`⇒a^2-2ab+b^2≥0`
`⇒a^2+b^2≥2ab`
`⇒a^2+2ab+b^2≥4ab`
`⇒(a+b)^2≥4ab`
`⇒a+b≥2\sqrt{ab}` $(*)$
Từ $(*)$.Suy ra: `a^3/b+bc≥2a\sqrt{ac} (1)`
` b^3/c+ca≥2b\sqrt{ba} (2)`
` c^3/a+ab≥2c\sqrt{cb} (3)`
Từ `(1);(2);(3)` ta được:
`a^3/b+b^3/c+c^3/a+(ab+bc+ca)≥2(a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb})` $(**)$
Từ $(*)$.Suy ra:
`a^3/b+ab≥2a^2(4)`
`b^3/c+bc≥2b^2(5)`
`c^3/b+bc≥2c^2(6)`
Từ `(4);(5);(6)` ta có:
`a^3/b+ab+b^3/c+bc+c^3/b+bc≥2a^2+2b^2+2c^2`
`⇒a^3/b+b^3/c+c^3/b≥2a^2+2b^2+2c^2-ab-bc-ca`
`⇒2a^2+2b^2+2c^2-ab-bc-ca≥a^2+b^2+c^2≥ab+bc+ca`
`⇒a^3/b+b^3/c+c^3/b≥ab+bc+ca`
`⇒2(a^3/b+b^3/c+c^3/b)≥a^3/b+b^3/c+c^3/b+ab+bc+ca` $(***)$
Từ $(**);(***)$ ta có: `2(a^3/b+b^3/c+c^3/b)≥2(a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb})`
`⇒a^3/b+b^3/c+c^3/b≥a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}`
Em có thể làm thế này cũng được:
\(\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\ge\dfrac{1}{2}\left(a^2+ac\right)+\dfrac{1}{2}\left(b^2+ab\right)+\dfrac{1}{2}\left(c^2+bc\right)\)
\(\ge\dfrac{1}{2}.2a\sqrt{ac}+\dfrac{1}{2}.2b\sqrt{ab}+\dfrac{1}{2}.2c\sqrt{bc}\) (đpcm)