Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Văn Bảo

Cho a+b+c = 0 với : M = a(a+b) ( a+c ) ; N = b( b+c ) ( b+a ) ; P = c(c+d ) ( c+d )

chứng tỏ M = N = P

Hắc Hường
11 tháng 6 2018 lúc 20:19

Bài này mình đã giải rồi nhé, bạn tìm ở câu hỏi tương tự nhé! Mình sẽ giải lại

Giải:

Ta có: \(a+b+c=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\c+b=-a\end{matrix}\right.\)

Gắn các giá trị vào từng biểu thức, ta được:

\(M=a\left(a+b\right)\left(a+c\right)\)

\(\Leftrightarrow M=a\left(-c\right)\left(-b\right)\)

\(\Leftrightarrow M=abc\left(1\right)\)

\(N=b\left(b+c\right)\left(b+a\right)\)

\(\Leftrightarrow N=b\left(-a\right)\left(-c\right)\)

\(\Leftrightarrow N=abc\left(2\right)\)

\(P=c\left(c+a\right)\left(c+b\right)\)

\(\Leftrightarrow P=c\left(-b\right)\left(-a\right)\)

\(\Leftrightarrow P=abc\left(3\right)\)

Từ (1), (2) và (3) ta có đpcm

Vậy ...

Hồng Quang
11 tháng 6 2018 lúc 20:21

Ta có: a+b+c=0(gt)

=> a+b=-c ; a+c=-b ; b+c=-a

M= a(a+b)(a+c)= a(-c)(-b)=abc

N = b(b+c)(b+a)=b(-a)(-c)=abc

P=c(c+a)(c+b)= c(-b)(-a)=abc

=> M=N=P


Các câu hỏi tương tự
chú tuổi gì
Xem chi tiết
Hiyashi Yuuki
Xem chi tiết
Vladislav Hoàng
Xem chi tiết
Nguyễn Cao Triệu Vy
Xem chi tiết
Lê Quang Dũng
Xem chi tiết
ITACHY
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Nguyễn Thị Thanh Trúc
Xem chi tiết
tran thi mai anh
Xem chi tiết