Bài này mình đã giải rồi nhé, bạn tìm ở câu hỏi tương tự nhé! Mình sẽ giải lại
Giải:
Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\c+b=-a\end{matrix}\right.\)
Gắn các giá trị vào từng biểu thức, ta được:
\(M=a\left(a+b\right)\left(a+c\right)\)
\(\Leftrightarrow M=a\left(-c\right)\left(-b\right)\)
\(\Leftrightarrow M=abc\left(1\right)\)
\(N=b\left(b+c\right)\left(b+a\right)\)
\(\Leftrightarrow N=b\left(-a\right)\left(-c\right)\)
\(\Leftrightarrow N=abc\left(2\right)\)
\(P=c\left(c+a\right)\left(c+b\right)\)
\(\Leftrightarrow P=c\left(-b\right)\left(-a\right)\)
\(\Leftrightarrow P=abc\left(3\right)\)
Từ (1), (2) và (3) ta có đpcm
Vậy ...
Ta có: a+b+c=0(gt)
=> a+b=-c ; a+c=-b ; b+c=-a
M= a(a+b)(a+c)= a(-c)(-b)=abc
N = b(b+c)(b+a)=b(-a)(-c)=abc
P=c(c+a)(c+b)= c(-b)(-a)=abc
=> M=N=P