Lời giải:
Lớp 8 thì chắc bạn học BĐT Bunhiacopxky rồi.
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)(1+1+1)\geq \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Rightarrow 3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=12\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\geq 4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Đặt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=x\Rightarrow 3+x\geq 4x^2\)
\(\Leftrightarrow 4x^2-x-3\leq 0\)
\(\Leftrightarrow (4x+3)(x-1)\leq 0\Rightarrow x\leq 1\) hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq 1(*)\)
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)(a+a+a+a+b+c)\geq (1+1+1+1+1+1)^2\)
\(\Leftrightarrow \frac{4}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{36}{4a+b+c}\)
Hoàn toàn tương tự:
\(\frac{1}{a}+\frac{4}{b}+\frac{1}{c}\geq \frac{36}{a+4b+c}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\geq \frac{36}{a+b+4c}\)
Cộng theo vế các BĐT vừa thu được ở trên và rút gọn:
\(\Rightarrow \frac{1}{4a+b+c}+\frac{1}{a+4b+c}+\frac{1}{a+b+4c}\leq \frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\leq \frac{1}{6}.1=\frac{1}{6}\) (theo $(*)$)
Vậy ta có đpcm
Dấu "=" xảy ra khi $a=b=c=3$