Bất phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thiên Diệp

Cho a,b,c > 0. Tìm: \(P=\dfrac{4a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{4c}{a+b-c}\)

T.Thùy Ninh
12 tháng 6 2017 lúc 21:23

Đặt \(b+c-a=2x;c+a-b=2y;a+b-c=2z\)\(\Rightarrow a=y+z;b=z+x;c=x+y\)

\(P=\dfrac{4a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{4c}{a+b-c}=\dfrac{4\left(y+z\right)}{2x}+\dfrac{4\left(z+x\right)}{2y}+\dfrac{4\left(x+y\right)}{2z}\)\(\Leftrightarrow\dfrac{2\left(y+z\right)}{x}+\dfrac{2\left(z+x\right)}{y}+\dfrac{2\left(x+y\right)}{z}=2\left(\dfrac{y}{x}+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{x}{y}+\dfrac{x}{z}+\dfrac{y}{z}\right)\ge2.\left(2+2+2\right)=12\)


Các câu hỏi tương tự
Thiên Diệp
Xem chi tiết
Không Tên
Xem chi tiết
Võ Nhật  Hoàng
Xem chi tiết
Nguyễn Đức Tâm
Xem chi tiết
ĐOÀN ĐINH SỸ
Xem chi tiết
Nguyễn Đức Tâm
Xem chi tiết
An Nguyễn Thiện
Xem chi tiết
An Nguyễn Thiện
Xem chi tiết
An Nguyễn Thiện
Xem chi tiết