Giải :
Áp dụng BĐT AM-GM ta có :
\(\dfrac{1}{a^5}+\dfrac{1}{b^5}+1+1+1\ge\dfrac{5}{ab}\left(1\right)\\ \dfrac{1}{b^5}+\dfrac{1}{c^5}+1+1+1\ge\dfrac{5}{bc}\left(2\right)\\ \dfrac{1}{c^5}+\dfrac{1}{a^5}+1+1+1\ge\dfrac{5}{ca}\left(3\right)\)
\(Từ\left(1\right),\left(2\right)và\left(3\right),cộng\)\(vế\) \(theo\) \(vế\) \(ta\) \(có\) :
\(2P+9\ge5\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=5.\dfrac{c+a+b}{abc}=5.\dfrac{3abc}{abc}=15\)
\(\Rightarrow2P\ge6\\ \Rightarrow P\ge3\)
Dấu "=" xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3abc\\\dfrac{1}{a^5}=\dfrac{1}{b^5}=\dfrac{1}{c^5}=1\end{matrix}\right.\Leftrightarrow a=b=c=1\)
Vậy \(Min_P=3\Leftrightarrow a=b=c=1\)
Một cách sử dụng AM-GM khác?
\(\frac{1}{a^5}+1+1+1+1\ge5\sqrt[5]{\frac{1}{a^5}}=\frac{5}{a}\)
Tương tự hai BĐT còn lại và cộng theo vế thu được:
\(P+12\ge5\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge5\sqrt{3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}=5\sqrt{3.\frac{a+b+c}{abc}}=15\)
Hay \(P\ge15-12=3\)
Đẳng thức xảy r a khi a = b = c = 1.
P/s: Em hóng lên 200 GP môn toán quá:( còn 16 gp nữa...
Đặt \(\dfrac{1}{a}=x;\dfrac{1}{b}=y;\dfrac{1}{c}=z\) thì ta co
\(xy+yz+zx=3;P=x^5+y^5+z^5\)
\(\Rightarrow4P+18=\sum\left(x^5+x^5+y^5+y^5+1+1+1+1+1+1\right)\ge10\left(xy+yz+zx\right)=30\)
\(\Leftrightarrow P\ge3\)