Bài 3: Bất phương trình một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồng Đen Hoa

Cho a,b,c >0

Cm \(\dfrac{ }{\dfrac{ }{ }}\)

(b+c-a)/2a+ (a-b+c)/2b+ (a+b-c)/2c > hoặc = 3/2

Lightning Farron
9 tháng 4 2017 lúc 12:34

\(\dfrac{b+c-a}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)

Ta có: \(\dfrac{b+c-a}{2a}=\dfrac{b}{2a}+\dfrac{c}{2a}-\dfrac{a}{2a}=\dfrac{b}{2a}+\dfrac{c}{2a}-\dfrac{1}{2}\)

Viết lại BĐT cần chứng minh như sau:

\(\dfrac{b}{2a}+\dfrac{c}{2a}-\dfrac{1}{2}+\dfrac{a}{2b}-\dfrac{1}{2}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}-\dfrac{1}{2}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{b}{2a}+\dfrac{c}{2a}+\dfrac{a}{2b}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}-\dfrac{3}{2}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{b}{2a}+\dfrac{c}{2a}+\dfrac{a}{2b}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}-3\ge0\)

Áp dụng BĐT AM-GM ta có:

\(\dfrac{b}{2a}+\dfrac{a}{2b}=\dfrac{1}{2}\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge\dfrac{1}{2}\cdot2\sqrt{\dfrac{b}{a}\cdot\dfrac{a}{b}}=2\cdot\dfrac{1}{2}=1\)

\(\dfrac{c}{2a}+\dfrac{a}{2c}=\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge\dfrac{1}{2}\cdot2\sqrt{\dfrac{c}{a}+\dfrac{a}{c}}=\dfrac{1}{2}\cdot2=1\)

\(\dfrac{b}{2c}+\dfrac{c}{2b}=\dfrac{1}{2}\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge\dfrac{1}{2}\cdot2\sqrt{\dfrac{b}{c}\cdot\dfrac{c}{b}}=\dfrac{1}{2}\cdot2=1\)

Cộng theo vế 3 BĐT trên ta có:

\(\dfrac{b}{2a}+\dfrac{c}{2a}+\dfrac{a}{2b}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}\ge3\)

\(\Rightarrow\dfrac{b}{2a}+\dfrac{c}{2a}+\dfrac{a}{2b}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}-3\ge3-3=0\)

BĐT đúng nên ta có ĐPCM


Các câu hỏi tương tự
Trần Băng Băng
Xem chi tiết
Lưu Phương Thảo
Xem chi tiết
HAcker Quang Hải U23 VN
Xem chi tiết
Phạm la
Xem chi tiết
Đỗ Linh Chi
Xem chi tiết
Hoàng Mai Anh
Xem chi tiết
Thái Viết Nam
Xem chi tiết
Phú An Hồ Phạm
Xem chi tiết
Đỗ Linh Chi
Xem chi tiết