\(abc+a+c=b\Leftrightarrow ac+\frac{a}{b}+\frac{c}{b}=1\)
\(\Rightarrow\) tồn tại 1 tam giác nhọn ABC sao cho: \(\left\{{}\begin{matrix}a=tan\frac{A}{2}\\\frac{1}{b}=tan\frac{B}{2}\\c=tan\frac{C}{2}\end{matrix}\right.\)
Đặt vế trái của biểu thức là P, ta có:
\(P=\frac{2}{1+tan^2\frac{A}{2}}-\frac{2}{1+\frac{1}{tan^2\frac{B}{2}}}+\frac{3}{1+tan^2\frac{C}{2}}=2cos^2\frac{A}{2}-2sin^2\frac{B}{2}+3cos^2\frac{C}{2}\)
\(=cosA+cosB+3cos^2\frac{C}{2}=2cos\frac{A+B}{2}cos\frac{A-B}{2}+3cos^2\frac{C}{2}\)
\(=2sin\frac{C}{2}.cos\frac{A-B}{2}-3sin^2\frac{C}{2}-\frac{1}{3}cos^2\frac{A-B}{2}+\frac{1}{3}cos^2\frac{A-B}{2}+3\)
\(=-3\left(sin\frac{C}{2}-\frac{1}{3}cos\frac{A-B}{2}\right)^2+\frac{1}{3}cos^2\frac{A-B}{2}+3\le0+\frac{1}{3}+3=\frac{10}{3}\)